Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book proposes promising mmWave solutions to promoting safe and reliable vehicular communications. The authors include topics such as channel estimation, multi-user transceiver design, and advanced index modulation. For channel estimation, unique channel properties and hybrid structures are first introduced, followed by the development of a doubly-sparse doubly-selective channel estimator. For multi-user transceiver design, the concept of hybrid block diagonalization (HBD) is first introduced, followed by a generic HBD-based transceiver design to maximize the system capacity. For advanced index modulation, the generalized beamspace modulation for uplink multi-user scenarios are first introduced, followed by the precoded beamspace modulation for the downlink. Finally, this book discusses open problems and future research directions to inspire further studies in the field of mmWave vehicular communications.
This book provides readers with an overview of Cloud Computing, starting with historical background on mainframe computers and early networking protocols, leading to current concerns such as hardware and systems security, performance, emerging areas of IoT, Edge Computing, and healthcare etc. Readers will benefit from the in-depth discussion of cloud computing usage and the underlying architectures. The authors explain carefully the "e;why's and how's"e; of Cloud Computing, so engineers will find this book an invaluable source of information to the topic. This third edition includes new material on Cloud Computing Scalability, as well as best practices for using dynamic cloud infrastructure, and cloud operations management with cost optimizations. Several new examples and analysis of cloud security have been added, including ARM architecture and https protocol.Provides practical guidance for software developers engaged in migrating in-house applications to Public Cloud;Describes for IT managers how to improve their Cloud Computing infrastructures;Includes coverage of security concerns with Cloud operating models;Uses several case studies to illustrate the "e;why's and how's"e; of using the Cloud;Examples and options to improve Cloud Computing Scalability.
This book systematically presents the wireless sensing technology, which has become a promising sensing paradigm in recent years. It includes the introduction of underlying sensing principles, wireless signals, sensing methodologies and enabled applications. Meanwhile, it provides case studies to demonstrate how wireless sensing is applied for representative human and object sensing applications.This book also provides a wireless sensing framework as a guidance to understand and design a wireless sensing system or prototype based on their needs. It also presents a critical investigation of the challenges in achieving wireless sensing in both signal-level and application-level contexts. Accordingly, it summarizes the typical solutions to tackle the related challenges.Researchers and advanced-level students in computer science or electrical engineering working on the design of a wireless system will find this book useful as a reference. Professionals working in the wireless sensing industry will also find this book valuable as a reference tool.
This book is a collection of insightful and unique state-of the-art papers presented at the Computing Conference which took place in London on June 22¿23, 2023. A total of 539 papers were received out of which 193 were selected for presenting after double-blind peer-review. The book covers a wide range of scientific topics including IoT, Artificial Intelligence, Computing, Data Science, Networking, Data security and Privacy, etc. The conference was successful in reaping the advantages of both online and offline modes. The goal of this conference is to give a platform to researchers with fundamental contributions and to be a premier venue for academic and industry practitioners to share new ideas and development experiences. We hope that readers find this book interesting and valuable. We also expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject.
This book provides a comprehensive, systematic description of modern timekeeping and its specializations. Introductory chapters discuss the concept of time and its definition, then briefly look at pre-Atomic Era timekeeping to set the stage for the introduction of the atomic clock. Subsequent chapters focus on concepts such as frequency stability and measurement uncertainty, as well as computer network time-synchronization protocols including Network Time Protocol (NTP) and Precise Time Protocol (PTP). The book then delves into the nuts and bolts of the Global Navigation Satellite Systems (GNSS), Two-Way Satellite Time and Frequency Transfer, and Optical Time and Frequency Transfer. Timescale theory is then described as a way to combine clock data, and the algorithms and procedures used to generate Coordinated Universal Time (UTC) are given. Finally, there is a look at modern applications of timekeeping and time transfer.Featuring a glossary of all key terms, this book is highly recommended for trained or incoming physicists, engineers, or mathematicians working, for example, in manufacturing or timing laboratories. Additionally, it is suitable for use in introductory university courses dealing with the subject of timekeeping.
The objective of this book is to provide you the reader a complete systems engineering treatment of GNSS. We are experts with practical experience in GPS/GNSS design and similar areas that are addressed within the book. We provide a thorough, in-depth treatment of each topic.Within this book, updated information on GPS and GLONASS is presented. In particular, descriptions of new satellites, such as GPS III and GLONASS K2 and their respective signal sets (e.g., GPS III L1C and GLONASS L3OC), are included.There are in-depth technical descriptions of each emerging satellite navigation system: BeiDou, Galileo, QZSS, and NavIC. Dedicated chapters cover each system's constellation configuration, satellites, ground control system and user equipment. Detailed satellite signal characteristics are also provided.Recently, we've heard from many engineers that they learned how GPS receivers work from this title. In this title, the design is included, and treatment of receivers is updated and expanded in several important ways. New material has been added on important receiver components, such as antennas and front-end electronics. The increased complexity of multiconstellation, multifrequency receivers, which are rapidly becoming the norm today, is addressed in detail. Other added features of this title are the clear step-by-step design process and associated trades required to develop a GNSS receiver, depending on the specific receiver application.This subject will be of great value to those readers who need to understand these concepts, either for their own design tasks or to aid their satellite navigation system engineering knowledge. To round out the discussion of receivers, updated treatments of interference, ionospheric scintillation, and multipath are provided along with new material on blockage from foliage, terrain, and man-made structures.Now there has been major developments in GNSS augmentations, including differential GNSS (DGNSS) systems, Precise Point Positioning (PPP) techniques, and the use of external sensors/networks. The numerous deployed or planned satellite-based augmentation system (SBAS) networks are detailed, including WAAS, EGNOS, MSAS, GAGAN, and SDCM, as are groundbased differential systems used for various applications.The use of PPP techniques has greatly increased in recent years, and the treatment in this title has been expanded accordingly. Material addressing integration of GNSS with other sensors has been thoroughly revamped, as has the treatment of network assistance as needed to reflect the evolution from 2G/3G to 4G cellular systems that now rely on multiconstellation GNSS receiver engines.While this title has generally been written for the engineering/scientific community, one of the series is devoted to GNSS markets and applications. Marketing projections (and the challenge thereof) are enumerated and discussion of the major applications is provided.This book is structured such that a reader with a general science background can learn the basics of GNSS. The reader with a stronger engineering/scientific background will be able to delve deeper and benefit from the more in-depth technical material. It is this ramp-up of mathematical/technical complexity along with the treatment of key topics that enables this publication to serve as a student text as well as a reference source.
This book discusses the role of optical networks in 3G, 4G, 5G and beyond. The authors discuss the evolution of the technologies, the research involved, and the applications with respect to optical communication systems. In addition, the book provides in-depth knowledge of broadband connectivity for future generation networks. More focus is given towards the front-, mid- and back- hauling of 5G and beyond. The authors present architecture for broadband connectivity and explain its potential in 5G and beyond applications. This book includes several architectures based on Hybrid Fiber-Wireless; Next Generation Passive Optical Networks Stage 1 and 2; millimeter wave over fiber; sub-THz wave over fiber; millimeter/sub-THz wave over multicore fiber; 6G fronthaul; 6G backhaul; GMPLS networks, and massive MIMO sub-Thz antenna. The contributors provide supplementary material such as simulations, analysis and experiments.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.