Udvidet returret til d. 31. januar 2025

Billedbehandling

Her finder du spændende bøger om Billedbehandling. Nedenfor er et flot udvalg af over 350 bøger om emnet.
Vis mere
Filter
Filter
Sorter efterSorter Populære
  • af Michael Felsberg
    611,95 kr.

    Under the title "e;Probabilistic and Biologically Inspired Feature Representations,"e; this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife-they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

  • af Ahmed Elgammal
    469,95 kr.

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such as interactive gaming, visualization, art installations, intelligent agent interaction, and various kinds of command and control tasks. Enabling this kind of rich, visual and multimodal interaction requires interactive-time solutions to problems such as detecting and recognizing faces and facial expressions, determining a person's direction of gaze and focus of attention, tracking movement of the body, and recognizing various kinds of gestures. In building technologies for vision-based interaction, there are choices to be made as to the range of possible sensors employed (e.g., single camera, stereo rig, depth camera), the precision and granularity of the desired outputs, the mobility of the solution, usability issues, etc. Practical considerations dictate that there is not a one-size-fits-all solution to the variety of interaction scenarios; however, there are principles and methodological approaches common to a wide range of problems in the domain. While new sensors such as the Microsoft Kinect are having a major influence on the research and practice of vision-based interaction in various settings, they are just a starting point for continued progress in the area. In this book, we discuss the landscape of history, opportunities, and challenges in this area of vision-based interaction; we review the state-of-the-art and seminal works in detecting and recognizing the human body and its components; we explore both static and dynamic approaches to "e;looking at people"e; vision problems; and we place the computer vision work in the context of other modalities and multimodal applications. Readers should gain a thorough understanding of current and future possibilities of computer vision technologies in the context of human-computer interaction.

  • af Margrit Betke
    664,95 kr.

    Because circular objects are projected to ellipses in images, ellipse fitting is a first step for 3-D analysis of circular objects in computer vision applications. For this reason, the study of ellipse fitting began as soon as computers came into use for image analysis in the 1970s, but it is only recently that optimal computation techniques based on the statistical properties of noise were established. These include renormalization (1993), which was then improved as FNS (2000) and HEIV (2000). Later, further improvements, called hyperaccurate correction (2006), HyperLS (2009), and hyper-renormalization (2012), were presented. Today, these are regarded as the most accurate fitting methods among all known techniques. This book describes these algorithms as well implementation details and applications to 3-D scene analysis. We also present general mathematical theories of statistical optimization underlying all ellipse fitting algorithms, including rigorous covariance and bias analyses and the theoretical accuracy limit. The results can be directly applied to other computer vision tasks including computing fundamental matrices and homographies between images. This book can serve not simply as a reference of ellipse fitting algorithms for researchers, but also as learning material for beginners who want to start computer vision research. The sample program codes are downloadable from the website: https://sites.google.com/a/morganclaypool.com/ellipse-fitting-for-computer-vision-implementation-and-applications.

  • af Margrit Betke
    400,95 kr.

    In the human quest for scientific knowledge, empirical evidence is collected by visual perception. Tracking with computer vision takes on the important role to reveal complex patterns of motion that exist in the world we live in. Multi-object tracking algorithms provide new information on how groups and individual group members move through three-dimensional space. They enable us to study in depth the relationships between individuals in moving groups. These may be interactions of pedestrians on a crowded sidewalk, living cells under a microscope, or bats emerging in large numbers from a cave. Being able to track pedestrians is important for urban planning; analysis of cell interactions supports research on biomaterial design; and the study of bat and bird flight can guide the engineering of aircraft. We were inspired by this multitude of applications to consider the crucial component needed to advance a single-object tracking system to a multi-object tracking system-data association.Data association in the most general sense is the process of matching information about newly observed objects with information that was previously observed about them. This information may be about their identities, positions, or trajectories. Algorithms for data association search for matches that optimize certain match criteria and are subject to physical conditions. They can therefore be formulated as solving a "e;constrained optimization problem"e;-the problem of optimizing an objective function of some variables in the presence of constraints on these variables. As such, data association methods have a strong mathematical grounding and are valuable general tools for computer vision researchers.This book serves as a tutorial on data association methods, intended for both students and experts in computer vision. We describe the basic research problems, review the current state of the art, and present some recently developed approaches. The book covers multi-object tracking in two and three dimensions. We consider two imaging scenarios involving either single cameras or multiple cameras with overlapping fields of view, and requiring across-time and across-view data association methods. In addition to methods that match new measurements to already established tracks, we describe methods that match trajectory segments, also called tracklets. The book presents a principled application of data association to solve two interesting tasks: first, analyzing the movements of groups of free-flying animals and second, reconstructing the movements of groups of pedestrians. We conclude by discussing exciting directions for future research.

  • af Kobus Barnard
    512,95 kr.

    Background subtraction is a widely used concept for detection of moving objects in videos. In the last two decades there has been a lot of development in designing algorithms for background subtraction, as well as wide use of these algorithms in various important applications, such as visual surveillance, sports video analysis, motion capture, etc. Various statistical approaches have been proposed to model scene backgrounds. The concept of background subtraction also has been extended to detect objects from videos captured from moving cameras. This book reviews the concept and practice of background subtraction. We discuss several traditional statistical background subtraction models, including the widely used parametric Gaussian mixture models and non-parametric models. We also discuss the issue of shadow suppression, which is essential for human motion analysis applications. This book discusses approaches and tradeoffs for background maintenance. This book also reviews many of the recent developments in background subtraction paradigm. Recent advances in developing algorithms for background subtraction from moving cameras are described, including motion-compensation-based approaches and motion-segmentation-based approaches. For links to the videos to accompany this book, please see sites.google.com/a/morganclaypool.com/backgroundsubtraction/Table of Contents: Preface / Acknowledgments / Figure Credits / Object Detection and Segmentation in Videos / Background Subtraction from a Stationary Camera / Background Subtraction from a Moving Camera / Bibliography / Author's Biography

  • af Walter J. Scheirer
    517,95 kr.

    A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the "e;average."e; From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.

  • af Ha Quang Minh
    619,95 kr.

    Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.

  • af Michael Teutsch
    615,95 kr.

    Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.

  • af Rameswar Panda
    319,95 kr.

    Person re-identification is the problem of associating observations of targets in different non-overlapping cameras. Most of the existing learning-based methods have resulted in improved performance on standard re-identification benchmarks, but at the cost of time-consuming and tediously labeled data. Motivated by this, learning person re-identification models with limited to no supervision has drawn a great deal of attention in recent years.In this book, we provide an overview of some of the literature in person re-identification, and then move on to focus on some specific problems in the context of person re-identification with limited supervision in multi-camera environments. We expect this to lead to interesting problems for researchers to consider in the future, beyond the conventional fully supervised setup that has been the framework for a lot of work in person re-identification.Chapter 1 starts with an overview of the problems in person re-identification and the major research directions. We provide an overview of the prior works that align most closely with the limited supervision theme of this book. Chapter 2 demonstrates how global camera network constraints in the form of consistency can be utilized for improving the accuracy of camera pair-wise person re-identification models and also selecting a minimal subset of image pairs for labeling without compromising accuracy. Chapter 3 presents two methods that hold the potential for developing highly scalable systems for video person re-identification with limited supervision. In the one-shot setting where only one tracklet per identity is labeled, the objective is to utilize this small labeled set along with a larger unlabeled set of tracklets to obtain a re-identification model. Another setting is completely unsupervised without requiring any identity labels. The temporal consistency in the videos allows us to infer about matching objects across the cameras with higher confidence, even with limited to no supervision. Chapter 4 investigates person re-identification in dynamic camera networks. Specifically, we consider a novel problem that has received very little attention in the community but is critically important for many applications where a new camera is added to an existing group observing a set of targets. We propose two possible solutions for on-boarding new camera(s) dynamically to an existing network using transfer learning with limited additional supervision. Finally, Chapter 5 concludes the book by highlighting the major directions for future research.

  • af Tat-Jun Chin & David Suter
    572,95 kr.

    Outlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The maximum consensus problem refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.

  • af Matthew Turk
    401,95 kr.

    As networks of video cameras are installed in many applications like security and surveillance, environmental monitoring, disaster response, and assisted living facilities, among others, image understanding in camera networks is becoming an important area of research and technology development. There are many challenges that need to be addressed in the process. Some of them are listed below:- Traditional computer vision challenges in tracking and recognition, robustness to pose, illumination, occlusion, clutter, recognition of objects, and activities;- Aggregating local information for wide area scene understanding, like obtaining stable, long-term tracks of objects;- Positioning of the cameras and dynamic control of pan-tilt-zoom (PTZ) cameras for optimal sensing;- Distributed processing and scene analysis algorithms;- Resource constraints imposed by different applications like security and surveillance, environmental monitoring, disaster response, assisted living facilities, etc. In this book, we focus on the basic research problems in camera networks, review the current state-of-the-art and present a detailed description of some of the recently developed methodologies. The major underlying theme in all the work presented is to take a network-centric view whereby the overall decisions are made at the network level. This is sometimes achieved by accumulating all the data at a central server, while at other times by exchanging decisions made by individual cameras based on their locally sensed data. Chapter One starts with an overview of the problems in camera networks and the major research directions. Some of the currently available experimental testbeds are also discussed here. One of the fundamental tasks in the analysis of dynamic scenes is to track objects. Since camera networks cover a large area, the systems need to be able to track over such wide areas where there could be both overlapping and non-overlapping fields of view of the cameras, as addressed in Chapter Two: Distributed processing is another challenge in camera networks and recent methods have shown how to do tracking, pose estimation and calibration in a distributed environment. Consensus algorithms that enable these tasks are described in Chapter Three. Chapter Four summarizes a few approaches on object and activity recognition in both distributed and centralized camera network environments. All these methods have focused primarily on the analysis side given that images are being obtained by the cameras. Efficient utilization of such networks often calls for active sensing, whereby the acquisition and analysis phases are closely linked. We discuss this issue in detail in Chapter Five and show how collaborative and opportunistic sensing in a camera network can be achieved. Finally, Chapter Six concludes the book by highlighting the major directions for future research. Table of Contents: An Introduction to Camera Networks / Wide-Area Tracking / Distributed Processing in Camera Networks / Object and Activity Recognition / Active Sensing / Future Research Directions

  • af Kenichi Kanatani
    576,95 kr.

    Modeling data from visual and linguistic modalities together creates opportunities for better understanding of both, and supports many useful applications. Examples of dual visual-linguistic data includes images with keywords, video with narrative, and figures in documents. We consider two key task-driven themes: translating from one modality to another (e.g., inferring annotations for images) and understanding the data using all modalities, where one modality can help disambiguate information in another. The multiple modalities can either be essentially semantically redundant (e.g., keywords provided by a person looking at the image), or largely complementary (e.g., meta data such as the camera used). Redundancy and complementarity are two endpoints of a scale, and we observe that good performance on translation requires some redundancy, and that joint inference is most useful where some information is complementary. Computational methods discussed are broadly organized into ones for simple keywords, ones going beyond keywords toward natural language, and ones considering sequential aspects of natural language. Methods for keywords are further organized based on localization of semantics, going from words about the scene taken as whole, to words that apply to specific parts of the scene, to relationships between parts. Methods going beyond keywords are organized by the linguistic roles that are learned, exploited, or generated. These include proper nouns, adjectives, spatial and comparative prepositions, and verbs. More recent developments in dealing with sequential structure include automated captioning of scenes and video, alignment of video and text, and automated answering of questions about scenes depicted in images.

  • af Kristin J. Dana
    613,95 kr.

    Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance-to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.

  • af Ian H. Jermyn
    572,95 kr.

    Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

  • af Novello Tiago
    663,95 kr.

    This book explores the visualization of three-dimensional non-Euclidean spaces using ray-tracing techniques in Graphics Processing Unit (GPU). This is a trending topic in mathematical visualization that combines the mathematics areas of geometry and topology, with visualization concepts of computer graphics. Several conditions made this a special moment for such topic. On one hand, the development of mathematical research, computer graphics, and algorithms have provided the necessary theoretical framework. On the other hand, the evolution of the technologies and media allows us to be immersed in three-dimensional spaces using Virtual Reality. The content of this book serves both experts in the areas and students. Although this is a short book, it is self-contained since it considers all the ideas, motivations, references, and intuitive explanations of the required fundamental concepts.

  • af Liu Shiguang
    612,95 kr.

    This book gives a broad overview of research on sound simulation driven by a variety of applications. Vibrating objects produce sound, which then propagates through a medium such as air or water before finally being heard by a listener. As a crucial sensory channel, sound plays a vital role in many applications. There is a well-established research community in acoustics that has studied the problems related to sound simulation for six decades. Some of the earliest work was motivated by the design of concert halls, theaters, or lecture rooms with good acoustic characteristics. These problems also have been investigated in other applications, including noise control and sound design for urban planning, building construction, and automotive applications. Moreover, plausible or realistic sound effects can improve the sense of presence in a virtual environment or a game. In these applications, sound can provide important clues such as source directionality and spatial size. The book first surveys various sound synthesis methods, including harmonic synthesis, texture synthesis, spectral analysis, and physics-based synthesis. Next, it provides an overview of sound propagation techniques, including wave-based methods, geometric-based methods, and hybrid methods. The book also summarizes various techniques for sound rendering. Finally, it surveys some recent trends, including the use of machine learning methods to accelerate sound simulation and the use of sound simulation techniques for other applications such as speech recognition, source localization, and computer-aided design.

  • af Jessie Y. C. Chen
    927,95 kr.

    This two-volume set LNCS 13317 and 13318 constitutes the thoroughly refereed proceedings of the 14th International Conference on Virtual, Augmented and Mixed Reality, VAMR 2022, held virtually as part of the 24rd HCI International Conference, HCII 2022, in June/July 2022.The total of 1276 papers and 241 posters included in the 39 HCII 2021 proceedings volumes was carefully reviewed and selected from 5222 submissions. The 56 papers included in this 2-volume set were organized in topical sections as follows: Developing VAMR Environments; Evaluating VAMR environments; Gesture-based, haptic and multimodal interaction in VAMR; Social, emotional, psychological and persuasive aspects in VAMR; VAMR in learning, education and culture; VAMR in aviation; Industrial applications of VAMR. The first volume focuses on topics related to developing and evaluating VAMR environments, gesture-based, haptic and multimodal interaction in VAMR, as well as social, emotional, psychological and persuasive aspects in VAMR, while the second focusses on topics related to VAMR in learning, education and culture, VAMR in aviation, and industrial applications of VAMR.

  • af Nima Dokoohaki, Reza Shirvany, Humberto Jesús Corona Pampín & mfl.
    906,95 - 1.000,95 kr.

  • af Fabian Kai Dietrich Noering
    1.002,95 kr.

    In the last decade unsupervised pattern discovery in time series, i.e. the problem of finding recurrent similar subsequences in long multivariate time series without the need of querying subsequences, has earned more and more attention in research and industry. Pattern discovery was already successfully applied to various areas like seismology, medicine, robotics or music. Until now an application to automotive time series has not been investigated. This dissertation fills this desideratum by studying the special characteristics of vehicle sensor logs and proposing an appropriate approach for pattern discovery. To prove the benefit of pattern discovery methods in automotive applications, the algorithm is applied to construct representative driving cycles. 

  • af Jong-Hoon Kim, Madhusudan Singh, Dhananjay Singh, mfl.
    1.253,95 kr.

  • af Ravishankar Chityala & Sridevi (SriRav Scientific Solutions Pudipeddi
    478,95 - 1.623,95 kr.

  • af S. Poonkuntran
    1.418,95 kr.

    The book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision.

  • af Loveleen Gaur
    1.399,95 kr.

    Apart from technological introduction to deepfakes concept, the book details algorithms to detect deepfakes, techniques for identifying manipulated content and identifying face swap, generative adversarial neural networks, media forensic techniques, deep learning architectures, forensic analysis of deepfakes and so forth.

  • af Parikshit Narendra Mahalle
    679,95 kr.

    With the tremendous growth and availability of the data, this book covers understanding the data, while telling a story with visualization including basic concepts about the data, the relationship and the visualizations. All the technical details that include installation and building the different visualizations are explained in a clear and systematic way. Various aspects pertaining to storytelling and visualization are explained in the book through Tableau.FeaturesProvides a hands-on approach in Tableau in a simplified manner with stepsDiscusses the broad background of data and its fundamentals, from the Internet of Everything to analyticsEmphasizes the use of context in delivering the storiesPresents case studies with the building of a dashboardPresents application areas and case studies with identification of the impactful visualizationThis book will be helpful for professionals, graduate students and senior undergraduate students in Manufacturing Engineering, Civil and Mechanical Engineering, Data Analytics and Data Visualization.

  • af KC Santosh
    928,95 kr.

    This volume constitutes the refereed proceedings of the 4th International Conference on Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2021, held in Msida, Malta, in December 2021. Due to the COVID-19 pandemic the conference was held online. The 19 full papers and 14 short papers presented were carefully reviewed and selected from 84 submissions. The papers are organized in the following topical sections: healthcare: medical imaging and informatics; computer vision and pattern recognition; document analysis and recognition; signal processing and machine learning; satellite imaging and remote sensing. 

  • - First International Conference, HCI-Games 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings
    af Xiaowen Fang
    1.146,95 kr.

    This book constitutes the refereed proceedings of the First International Conference on HCI in Games, HCI-Games 2019, held in July 2019 as part of HCI International 2019 in Orlando, FL, USA. HCII 2019 received a total of 5029 submissions, of which 1275 papers and 209 posters were accepted for publication after a careful reviewing process. The 34 papers presented in this volume are organized in topical sections named: Game Design; Gaming Experience; Serious Games; and Gamification.

  • af Prashant M. Pawar, R. Balasubramaniam, Bhuwaneshwari Melinamath, mfl.
    3.803,95 kr.

  • af Pei-Luen Patrick Rau
    1.238,95 kr.

    The four-volume set LNCS 13311 - 13314 constitutes the refereed proceedings of the 14th International Conference on Cross-Cultural Design, CCD 2022, which was held as part of HCI International 2022 and took place virtually during June 26 - July 1, 2022.The papers included in the HCII-CCD volume set were organized in topical sections as follows:Part I: Cross-Cultural Interaction Design; Collaborative and Participatory Cross-Cultural Design; Cross-Cultural Differences and HCI; Aspects of Intercultural DesignPart II: Cross-Cultural Learning, Training, and Education; Cross-Cultural Design in Arts and Music; Creative Industries and Cultural Heritage under a Cross-Cultural Perspective; Cross-Cultural Virtual Reality and GamesPart III: Intercultural Business Communication; Intercultural Business Communication; HCI and the Global Social Change Imposed by COVID-19; Intercultural Design for Well-being and InclusivenessPart IV: Cross-Cultural Product and Service Design; Cross-Cultural Mobility and Automotive UX Design; Design and Culture in Social Development and Digital Transformation of Cities and Urban Areas; Cross-Cultural Design in Intelligent Environments.

  • af Marcelo M. Soares
    1.427,95 kr.

    This book constitutes the refereed proceedings of the 11th International Conference on Design, User Experience, and Usability, DUXU 2022, held as part of the 23rd International Conference, HCI International 2022, which was held virtually in June/July 2022. The total of 1271 papers and 275 posters included in the HCII 2022 proceedings was carefully reviewed and selected from 5487 submissions.The DUXU 2022 proceedings comprise three volumes; they were organized in the following topical sections: Part I: Processes, Methods, and Tools for UX Design and Evaluation; User Requirements, Preferences, and UX Influential Factors; Usability, Acceptance, and User Experience Assessment.Part II: Emotion, Motivation, and Persuasion Design; Design for Well-being and Health.- Learning Experience Design; Globalization, Localization, and Culture Issues.Part III: Design Thinking and Philosophy; DUXU Case Studies; Design and User Experience in Emerging Technologies.

  • af Masaaki Kurosu
    1.147,95 kr.

    The three-volume set LNCS 13302, 13303 and 13304 constitutes the refereed proceedings of the Human Computer Interaction thematic area of the 24th International Conference on Human-Computer Interaction, HCII 2022, which took place virtually in June-July 2022.The 132 papers included in this HCI 2022 proceedings were organized in topical sections as follows:Part I: Theoretical and Multidisciplinary Approaches in HCI; Design and Evaluation Methods, Techniques and Tools; Emotions and Design; and Children-Computer Interaction,Part II: Novel Interaction Devices, Methods and Techniques; Text, Speech and Image Processing in HCI; Emotion and Physiological Reactions Recognition; and Human-Robot Interaction,Part III: Design and User Experience Case Studies, Persuasive Design and Behavioral Change; and Interacting with Chatbots and Virtual Agents.

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.