Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

Cellular Retention of Nanoparticles and Nanocomplexes in Biological Applications - Ujjwal Ranjan Dahiya - Bog

Bag om Cellular Retention of Nanoparticles and Nanocomplexes in Biological Applications

Nanosized materials possess unique properties because of their sub micrometre size (less than 1µm) and thus find wide array of applications in optics, electronics and biology. In biology they are used for delivery of therapeutics molecules and drugs (nanocarrier), imaging, theranostic and ablation therapy. A wide range of biotechnological applications are served by recent advances in nano- formulation approaches and design of novel nanocarriers, capable of efficiently delivering biotherapeutic molecules. These nanosized structures are much more efficient than tradition therapies in delivering dugs and other molecules to specific locations in controlled manner, even at much smaller dosage. Conventional pharmaceutical delivery systems are marred with multiple issues like poor specificity, drug resistance induction and toxicity, which severely decreases therapeutic efficiencies. This is where nano-based delivery approach comes to rescue and improve rapid clearance, off -target effects, un-controlled release and toxicity issues. Nanocarrier based delivery approaches are mostly dedicated to transport chemotherapeutic cargos, composed of colloidal nonentities and possess a high surface area to volume ratio. Apart from delivering therapeutic cargoes Nano formulations are also used for theranostic and ablation therapies. Nano based delivery systems can be broadly categorised as organic nanocomplexes and inorganic nanoparticles-based formulations. These particles allow a great degree of manoeuvrability in terms of their composition (organic, inorganic or hybrid), shape (sphere, rod, multilamellar, hyperbranched etc.), size (small and large), and surface functionalization (PEGylation, targeting moieties, functional groups etc.) as per the specific requirement. Carbon based nanomaterials which exhibits high cargo loading and biocompatibility are known as organic nanocomplexes and can be used for delivery purposes. Preparation of organic nanocomplexes can be based on self-assembly properties of these molecules (amphiphilic systems), or requires specific synthesis procedure. Recently much attention is drawn by micelle like nanocomplexes prepared by amphiphilic polymer for drug delivery applications. Also, polymerosome have been reported which shows intracellular microenvironment and tumor responsive properties, which allows triggered payload release (pH, temperature gradient, redox etc.) and improved imaging sensitivity. Poly lactic acid (PLA), saturated poly glycolic acid (PGA), poly a-hydroxy esters, and poly lactic-co-glycolic acid (PLGA) copolymers are FDA approved and most commonly used synthetic polymer for drug delivery applications

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9798224756858
  • Indbinding:
  • Paperback
  • Sideantal:
  • 166
  • Udgivet:
  • 7. februar 2024
  • Størrelse:
  • 216x10x280 mm.
  • Vægt:
  • 436 g.
  • 2-4 uger.
  • 24. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Cellular Retention of Nanoparticles and Nanocomplexes in Biological Applications

Nanosized materials possess unique properties because of their sub micrometre size (less than 1µm) and thus find wide array of applications in optics, electronics and biology. In biology they are used for delivery of therapeutics molecules and drugs (nanocarrier), imaging, theranostic and ablation therapy.
A wide range of biotechnological applications are served by recent advances in nano- formulation approaches and design of novel nanocarriers, capable of efficiently delivering biotherapeutic molecules. These nanosized structures are much more efficient than tradition therapies in delivering dugs and other molecules to specific locations in controlled manner, even at much smaller dosage. Conventional pharmaceutical delivery systems are marred with multiple issues like poor specificity, drug resistance induction and toxicity, which severely decreases therapeutic efficiencies. This is where nano-based delivery approach comes to rescue and improve rapid clearance, off -target effects, un-controlled release and toxicity issues.

Nanocarrier based delivery approaches are mostly dedicated to transport chemotherapeutic cargos, composed of colloidal nonentities and possess a high surface area to volume ratio. Apart from delivering therapeutic cargoes Nano formulations are also used for theranostic and ablation therapies. Nano based delivery systems can be broadly categorised as organic nanocomplexes and inorganic nanoparticles-based formulations. These particles allow a great degree of manoeuvrability in terms of their composition (organic, inorganic or hybrid), shape (sphere, rod, multilamellar, hyperbranched etc.), size (small and large), and surface functionalization (PEGylation, targeting moieties, functional groups etc.) as per the specific requirement.
Carbon based nanomaterials which exhibits high cargo loading and biocompatibility are known as organic nanocomplexes and can be used for delivery purposes. Preparation of organic nanocomplexes can be based on self-assembly properties of these molecules (amphiphilic systems), or requires specific synthesis procedure.

Recently much attention is drawn by micelle like nanocomplexes prepared by amphiphilic polymer for drug delivery applications. Also, polymerosome have been reported which shows intracellular microenvironment and tumor responsive properties, which allows triggered payload release (pH, temperature gradient, redox etc.) and improved imaging sensitivity. Poly lactic acid (PLA), saturated poly glycolic acid (PGA), poly a-hydroxy esters, and poly lactic-co-glycolic acid (PLGA) copolymers are FDA approved and most commonly used synthetic polymer for drug delivery applications

Brugerbedømmelser af Cellular Retention of Nanoparticles and Nanocomplexes in Biological Applications



Find lignende bøger
Bogen Cellular Retention of Nanoparticles and Nanocomplexes in Biological Applications findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.