Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Measurements and experiments are made each and every day, in fields as disparate as particle physics, chemistry, economics and medicine, but have you ever wondered why it is that a particular experiment has been designed to be the way it is. Indeed, how do you design an experiment to measure something whose value is unknown, and what should your considerations be on deciding whether an experiment has yielded the sought after, or indeed any useful result? These are old questions, and they are the reason behind this volume. We will explore the origins of the methods of data analysis that are today routinely applied to all measurements, but which were unknown before the mid-19th Century. Anyone who is interested in the relationship between the precision and accuracy of measurements will find this volume useful. Whether you are a physicist, a chemist, a social scientist, or a student studying one of these subjects, you will discover that the basis of measurement is the struggle to identify the needle of useful data hidden in the haystack of obscuring background noise.
Electromagnetism: Problems and solutions is an ideal companion book for the undergraduate student-sophomore, junior, or senior-who may want to work on more problems and receive immediate feedback while studying. Each chapter contains brief theoretical notes followed by the problem text with the solution and ends with a brief bibliography. Also presented are problems more general in nature, which may be a bit more challenging.
FPGAs have almost entirely replaced the traditional Application Specific Standard Parts (ASSP) such as the 74xx logic chip families because of their superior size, versatility, and speed. For example, FPGAs provide over a million fold increase in gates compared to ASSP parts. The traditional approach for hands-on exercises has relied on ASSP parts, primarily because of their simplicity and ease of use for the novice. Not only is this approach technically outdated, but it also severely limits the complexity of the designs that can be implemented. By introducing the readers to FPGAs, they are being familiarized with current digital technology and the skills to implement complex, sophisticated designs. However, working with FGPAs comes at a cost of increased complexity, notably the mastering of an HDL language, such as Verilog. Therefore, this book accomplishes the following: first, it teaches basic digital design concepts and then applies them through exercises; second, it implements these digital designs by teaching the user the syntax of the Verilog language while implementing the exercises. Finally, it employs contemporary digital hardware, such as the FPGA, to build a simple calculator, a basic music player, a frequency and period counter and it ends with a microprocessor being embedded in the fabric of the FGPA to communicate with the PC. In the process, readers learn about digital mathematics and digital-to-analog converter concepts through pulse width modulation.
This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master's level.
This book describes modern focused ion beam microscopes and techniques and how they can be used to aid materials metrology and as tools for the fabrication of devices that in turn are used in many other aspects of fundamental metrology.
An Introduction to the Gas Phase is adapted from a set of lecture notes for a core first year lecture course in physical chemistry taught at the University of Oxford. The book is intended to give a relatively concise introduction to the gas phase at a level suitable for any undergraduate scientist. After defining the gas phase, properties of gases such as temperature, pressure, and volume are discussed. The relationships between these properties are explained at a molecular level, and simple models are introduced that allow the various gas laws to be derived from first principles. Finally, the collisional behavior of gases is used to explain a number of gas-phase phenomena, such as effusion, diffusion, and thermal conductivity.
This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?
Recent important discoveries and developments in nanotechnology have had a remarkable and ever-increasing impact on many industries, especially materials science, pharmaceuticals, and biotechnology. Nanocarriers have been investigated for a wide variety of different medical applications. Some examples of these nanocarriers include polymersomes, liposomes, micelles and carbon-based nanomaterials. Within this book, the authors describe different features of carbon nanotubes (CNTs), survey the properties of both the multi-walled and single-walled varieties, and cover their applications in drug and gene delivery. In addition, the book explains the structure and properties of CNTs prepared by different method, and discussed their isolation and purification. The future of CNTs in the field of biomedical science will depend on minimizing their adverse effects by careful study of their structure and properties.
Space curves around you, time slows down, particles are waves, a cat is both alive and dead. What's going on? It all starts to make sense when we untangle the universe with this clear and enlightening book. Day-dreamers and deep-thinkers, these are the concepts that will send your mind wandering to new places with a deeper understanding of the natural world. Physics has always been a tricky subject for the general public. Millions are fascinated by the laws of the physical world, but there has been a lack of books written specifically for general readers. The Universe Untangled is for those who are curious; yet do not have an extensive mathematical background. It uses images, analogies and comprehensible language to cover popular topics of interest including the evolution of the universe, fundamental forces and particle interactions, the nature of space and time according to Special and General Relativity, the ideas of Quantum Mechanics and the quest for knowing the unknown. The Universe Untangled is a unique book because it is written by an author whose career has been built on making science accessible to all. She has contributed to the design and content production of educational games, professional development courses, and science workbooks. In essence, this is not a book written by a physicist for other physicists. It is written by an educator who cares only about sharing her passion for science with others.
Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.
The electric dipole moment (EDM) challenge measures a non-zero proton EDM value and this book suggests how the challenge can be met. Any measurably large proton EDM would violate the standard model. The method to be employed uses an intense beam of 'frozen spin' protons circulating for hour-long times in a storage ring 'trap'. The smallness of EDMs allows them to test existing theories, but also makes them hard to measure. Such EDM experiments are inexpensive, at least compared to building accelerators of ever-greater energy.
How does it happen that billions of stars can cooperate to produce the beautiful spirals that characterize so many galaxies, including ours? This book reviews the history behind the discovery of spiral galaxies and the problems faced when trying to explain the existence of spiral structure within them. In the book, subjects such as galaxy morphology and structure are addressed as well as several models for spiral structure. The evidence in favor or against these models is discussed. The book ends by discussing how spiral structure can be used as a proxy for other properties of spiral galaxies, such as their dark matter content and their central supermassive black hole masses, and why this is important.
Physicists are very smart people. Still, when it comes to moving their ideas from university to market, they often lack the basic set of know-hows that could help them succeed in the technology transfer process. To fill this gap, Entrepreneurship for Physicists: A Practical Guide to Move Ideas from University to Market offers a concise analysis of the key ingredients that enable entrepreneurs to bring added value to their customers. After a short discussion on why university physicists should pay more attention to this aspect of their professional life, the book dives into a set of theories, models, and tools that could help an academic scientist transform an idea into customer added value. The reader will be introduced to effectuation theory, internal resource analysis, external landscape analysis, value capture, lean startup method, business canvases, financial projections, and to a series of topics that, albeit often neglected, do play a fundamental role in technology transfer, such as trust, communication, and persuasion. In the last chapter, the book explains howmost of the concepts discussed actually find application in the career of scientists in a much broader sense.
Sound-Power Flow: A practitioner's handbook for sound intensity is a guide for practitioners and research scientists in different areas of acoustical science. There are three fundamental quantities in acoustics: sound pressure, sound particle velocity, and sound intensity. This book is about sound intensity and demonstrates the advantages and uses of acoustical sensing compared with other forms of sensing. It describes applications such as: measuring total sound power; directional hearing of humans and mammals; echolocation; measuring sound-power flow in ducts; and uses of non-contact, focused, high-frequency, pulse-echo ultrasonic probes.This book presents computational approaches using standard mathematics, and relates these to the measurement of sound-power flow in air and water. It also uses linear units rather than logarithmic units - this making computation in acoustics simpler and more accessible to advanced mathematics and computing. The book is based on work by the author and his associates at General Motors, the University of Mississippi, and Sonometrics.
Order from chaos is simultaneously a mantra of physics and a reality in biology. Physicist Norman Packard suggested that life developed and thrives at the edge of chaos. Questions remain, however, as to how much practical knowledge of biology can be traced to existing physical principles, and how much physics has to change in order to address the complexity of biology. Phil Anderson, a physics Nobel laureate, contributed to popularizing a new notion of the end of "reductionism." In this view, it is necessary to abandon the quest of reducing complex behavior to known physical results, and to identify emergent behaviors and principles. In the present book, however, we have sought physical rules that can underlie the behavior of biota as well as the geochemistry of soil development. We looked for fundamental principles, such as the dominance of water flow paths with the least cumulative resistance, that could maintain their relevance across a wide range of spatial and temporal scales, together with the appropriate description of solute transport associated with such flow paths. Thus, ultimately, we address both nutrient and water transport limitations of processes from chemical weathering to vascular plant growth. The physical principles guiding our effort are established in different, but related concepts and fields of research, so that in fact our book applies reductionist techniques guided by analogy. The fact that fundamental traits extend across biotic and abiotic processes, i.e., the same fluid flow rate is relevant to both, but that distinctions in topology of the connected paths lead to dramatic differences in growth rates, helps unite the study of these nominally different disciplines of geochemistry and geobiology within the same framework. It has been our goal in writing this book to share the excitement of learning, and one of the most exciting portions to us has been the ability to bring some order to the question of the extent to which soils can facilitate plant growth, and what limitations on plant sizes, metabolism, occurrence, and correlations can be formulated thereby. While we bring order to the soil constraints on growth, we also generate some uncertainties in the scaling relationships of plant growth and metabolism. Although we have made an first attempt to incorporate edaphic constraints into allometric scaling, this is but an initial foray into the forest.
This book provides a broad introductory survey of this remarkable field, aiming to establish and clearly differentiate its physical principles, and also to provide a snapshot portrait of many of the most prominent current applications. Primary emphasis is placed on developing an understanding of the fundamental photonic origin behind the mechanism that operates in each type of effect. To this end, the first few chapters introduce and develop core theory, focusing on the physical significance and source of the most salient parameters, and revealing the detailed interplay between the key material and optical properties. Where appropriate, both classical and photonic (quantum mechanical) representations are discussed. The number of equations is purposely kept to a minimum, and only a broad background in optical physics is assumed. With copious examples and illustrations, each of the subsequent chapters then sets out to explain and exhibit the main features and uses of the various distinct types of mechanism that can be involved in optical nanomanipulation, including some of the very latest developments. To complete the scene, we also briefly discuss applications to larger, biological particles. Overall, this book aims to deliver to the non-specialist an amenable introduction to the technically more advanced literature on individual manipulation methods. Full references to the original research papers are given throughout, and an up-to-date bibliography is provided for each chapter, which directs the reader to other selected, more specialised sources.
In the 116 year history of the Nobel Prize in Physics, only two women have won the award; Marie Curie (1903) and Maria Mayer (1963). During the 60 years between those awards, several women did work of similar calibre. This book focuses on those women, providing biographies for each that discuss both how they made their discoveries and the gender-specific reception of those discoveries. It also discusses the Nobel process and how society and the scientific community's treatment of them were influenced by their gender.
This book covers the technology of switching or modulating light in semiconductor optical waveguides. Currently a key function for optical communications systems is the conversion of data from an electrical signal to an optical signal for transmission in very low loss optical fibres and the converse process of optical to electrical conversion the O/E/O data conversion. This conversion between electronic and photonic signals imposes an energy consumption overhead on optical communication systems. So many research workers have been attracted to ultrafast all-optical switching of data in different formats. As a way of introduction to all-optical switching in semiconductor waveguides the book covers the electro-optic effect, electroabsorption and electrorefraction; effects that can be used in semiconductor optical modulation devices. But the book focuses on all-optical switching using second and third order optical nonlinearities in AlGaAs optical waveguides. It covers a variety of device configurations including integrated nonlinear couplers and Mach-Zehnder interferometers. Further, it provides design software in suit of Mathematica notebooks that can be used to explore the device design.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.