Udvidet returret til d. 31. januar 2025
Bag om Grundlagen Der Mathematik, Abbildungen, Funktionen, Folgen

6.1.1. Auswahl-und Anordnungsprobleme Die Aufgaben der Kombinatorik lassen sich von Auswahl- oder Anordnungs­ problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewählten Ele­ menten einer endlichen Menge wichtig. Diese Elemente können Zahlen, Buchstaben, Personen, Gegenstände, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel mit a1' a2' ... , an bezeichnen. Dabei wird zu beachten sein, daß verschiedene Elemente auch durch verschiedene Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar­ gestellt werden. Zwei Zusammenstellungen sind grundsätzlich verschieden, wenn sie nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a a2 a3 1 und a1 a3 bzw. a1 a2 a3 und a1 a2 a4 jeweils voneinander verschieden. Im folgenden sollen die sechs Grundaufgaben erläutert werden, auf die sich alle Probleme der Kombinatorik im wesentlichen zurückführen lassen. Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusammen­ stellung sämtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783322002938
  • Indbinding:
  • Paperback
  • Sideantal:
  • 191
  • Udgivet:
  • 1. marts 1990
  • Udgave:
  • 991973
  • Størrelse:
  • 244x170x11 mm.
  • Vægt:
  • 322 g.
  • 8-11 hverdage.
  • 6. december 2024

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Grundlagen Der Mathematik, Abbildungen, Funktionen, Folgen

6.1.1. Auswahl-und Anordnungsprobleme Die Aufgaben der Kombinatorik lassen sich von Auswahl- oder Anordnungs­ problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewählten Ele­ menten einer endlichen Menge wichtig. Diese Elemente können Zahlen, Buchstaben, Personen, Gegenstände, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel mit a1' a2' ... , an bezeichnen. Dabei wird zu beachten sein, daß verschiedene Elemente auch durch verschiedene Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar­ gestellt werden. Zwei Zusammenstellungen sind grundsätzlich verschieden, wenn sie nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a a2 a3 1 und a1 a3 bzw. a1 a2 a3 und a1 a2 a4 jeweils voneinander verschieden. Im folgenden sollen die sechs Grundaufgaben erläutert werden, auf die sich alle Probleme der Kombinatorik im wesentlichen zurückführen lassen. Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusammen­ stellung sämtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt.

Brugerbedømmelser af Grundlagen Der Mathematik, Abbildungen, Funktionen, Folgen



Find lignende bøger
Bogen Grundlagen Der Mathematik, Abbildungen, Funktionen, Folgen findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.