Vi bøger
Levering: 1 - 2 hverdage

Mathematische Methoden in der Physik - H. J. Seifert - Bog

Bag om Mathematische Methoden in der Physik

Das Riemannsche Prinzip (Zerlegung der Definitionsmenge B in »einfache« Mengen B;)liegt fast allen numerischen Berechnungen und physikalischen Messungen von Integralen zugrunde. Das Lebesguesche Prinzip (Zerlegung der Zielmenge IR) fiihrt in allen Fiillen zum Erfolg, in denen das Integral nach 5.1.2.1 existiert. Entgegen dem Eindruck, den man aus einigen Darstellungen der Integrationstheorie gewinnen kann, liegt die Bedeutung des allgemeinen (Uber den Riemannschen weit hinausgehenden) Integralbegriffes nicht in der Moglichkeit, solche stark unstetigen Funktionen wie in 5 (ii) inte­ grieren zu konnen (den Physiker interessieren solche Funktionen ohne­ hin nicht). Entscheidend ist, daB die Menge der nach Lebesgue integrier­ baren Funktionen viel schonere Eigenschaften hat als ihre Teilmenge der Riemartn-integrierbaren Funktionen; iihnlich wie bei dem Obergang von (Q auf IR erhalten wir Vollstiilldigkeitseigenschaftell (siehe Satz 5.1 J. 7 und 7.1.3.4, andererseits Beispiel 5 (iii)). Dadurch, daB im Riemannschen Konzept in 5.1.1.3 und 5.1.0.3 nur endliche Summen zugelassen sind, entrallt zunachst die Moglichkeit, unbeschriinkte Funktionen oder Bereiche zuzulassen. Erst Uber den »Umweg« der "uneigentlichen Integrale" (5.2.3) sind viele in der Praxis + 00 1 d x2 bedeutsame Integrale wie S e- dx und S ,;; zu erklaren, obwohl X -x 0 V diese gemaB dem Konzept 5.1.0.3 genauso »gute« Integrale sind wie 1 2 etwa S x dx. o DaB immer noch in Grundkursen die Riemannsche Methode zur Definitioll des Integrals benutzt wird, ist wohl nur aus historischen GrUnden zu erkliiren.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783798505179
  • Indbinding:
  • Paperback
  • Sideantal:
  • 256
  • Udgivet:
  • 1. januar 1979
  • Størrelse:
  • 127x15x203 mm.
  • Vægt:
  • 279 g.
  • 8-11 hverdage.
  • 24. januar 2025
På lager

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Mathematische Methoden in der Physik

Das Riemannsche Prinzip (Zerlegung der Definitionsmenge B in »einfache« Mengen B;)liegt fast allen numerischen Berechnungen und physikalischen Messungen von Integralen zugrunde. Das Lebesguesche Prinzip (Zerlegung der Zielmenge IR) fiihrt in allen Fiillen zum Erfolg, in denen das Integral nach 5.1.2.1 existiert. Entgegen dem Eindruck, den man aus einigen Darstellungen der Integrationstheorie gewinnen kann, liegt die Bedeutung des allgemeinen (Uber den Riemannschen weit hinausgehenden) Integralbegriffes nicht in der Moglichkeit, solche stark unstetigen Funktionen wie in 5 (ii) inte­ grieren zu konnen (den Physiker interessieren solche Funktionen ohne­ hin nicht). Entscheidend ist, daB die Menge der nach Lebesgue integrier­ baren Funktionen viel schonere Eigenschaften hat als ihre Teilmenge der Riemartn-integrierbaren Funktionen; iihnlich wie bei dem Obergang von (Q auf IR erhalten wir Vollstiilldigkeitseigenschaftell (siehe Satz 5.1 J. 7 und 7.1.3.4, andererseits Beispiel 5 (iii)). Dadurch, daB im Riemannschen Konzept in 5.1.1.3 und 5.1.0.3 nur endliche Summen zugelassen sind, entrallt zunachst die Moglichkeit, unbeschriinkte Funktionen oder Bereiche zuzulassen. Erst Uber den »Umweg« der "uneigentlichen Integrale" (5.2.3) sind viele in der Praxis + 00 1 d x2 bedeutsame Integrale wie S e- dx und S ,;; zu erklaren, obwohl X -x 0 V diese gemaB dem Konzept 5.1.0.3 genauso »gute« Integrale sind wie 1 2 etwa S x dx. o DaB immer noch in Grundkursen die Riemannsche Methode zur Definitioll des Integrals benutzt wird, ist wohl nur aus historischen GrUnden zu erkliiren.

Brugerbedømmelser af Mathematische Methoden in der Physik



Find lignende bøger
Bogen Mathematische Methoden in der Physik findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.