Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

q-RASAR - Arkaprava Banerjee - Bog

Bag om q-RASAR

This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031520563
  • Indbinding:
  • Paperback
  • Sideantal:
  • 104
  • Udgivet:
  • 26. januar 2024
  • Udgave:
  • 24001
  • Størrelse:
  • 155x7x235 mm.
  • Vægt:
  • 172 g.
  • 8-11 hverdage.
  • 15. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af q-RASAR

This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains.

Brugerbedømmelser af q-RASAR



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.