Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This detailed book highlights recent advances in molecular imaging techniques and protocols, designed to be immediately applicable in global bio-laboratories. The chapters are categorized into seven major groups according to the reporter materials, such as imaging with passive optical readouts, activatable bioluminescent probes, functional substrates and luciferases, organic fluorescent probes, BRET probes, FRET probes, as well as with advanced instrumentation. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Live Cell Imaging: Methods and Protocols aims to direct and inspire researchers into creating smarter, next-generation imaging techniques that are truly quantitative, highly sensitive, and readily comprehended, in the effort to engender deeper understanding of biological systems and break new ground in the research fields of life science.
Nanotechnology-based E-Noses reviews advances in nanomaterials and their modification for use in e-sensors. "E-noses" or "electronic sensors" are emerging as advanced technologies for the fast detection of chemicals, gases, and explosives. The concept behind the "e-nose" is similar to the capability of humans and dogs in detecting materials based on odors. Nanomaterials can be used for e-nose technologies but their properties must be modified to make them effective sensors. The sensing capability and performance of these materials depend on several factors, such as morphology, dopants, microadditives, design of sensors, phase, and structure of the nanomaterials. Theoretical understanding of nanomaterials and technologies for improving sensors with better detection limits are covered. The most relevant nanomaterials, their synthesis strategies, and the relationship between properties and device performance are provided. Current state-of-the-art progress in nanotechnology device fabrication along with directions for future applications and challenges are discussed.
This volume provides a wide range of imaging protocols that can be tailored to specific organisms or cell-types. Chapters guide readers through fixed-cell, live-cell, phenotype screening, super-resolution, intravital imaging techniques, and fluorescence life-time imaging microscopy (FLIM). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Confocal Microscopy: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This first book on high-speed atomic force microscopy (HS-AFM) is intended for students and biologists who want to use HS-AFM in their research. It provides straightforward explanations of the principle and techniques of AFM and HS-AFM. Numerous examples of HS-AFM studies on proteins demonstrate how to apply this new form of microscopy to specific biological problems. Several precautions for successful imaging and the preparation of cantilever tips and substrate surfaces will greatly benefit first-time users of HS-AFM. In turn, the instrumentation techniques detailed in Chapter 4 can be skipped, but will be useful for engineers and scientists who want to develop the next generation of high-speed scanning probe microscopes for biology.The book is intended to facilitate the first-time use of this new technique, and to inspire students and researchers to tackle their own specific biological problems by directly observing dynamic events occurring in the nanoscopic world. Microscopy in biology has recently entered a new era with the advent of high-speed atomic force microscopy (HS-AFM). Unlike optical microscopy, electron microscopy, and conventional slow AFM, it allows us to directly observe biological molecules in physiological environments. Molecular "e;movies"e; created using HS-AFM can directly reveal how molecules behave and operate, without the need for subsequent complex analyses and roundabout interpretations. It also allows us to directly monitor morphological change in live cells, and dynamic molecular events occurring on the surfaces of living bacteria and intracellular organelles. As HS-AFM instruments were recently commercialized, in the near future HS-AFM is expected to become a common tool in biology, and will enhance and accelerate our understanding of biological phenomena.
This reference work presents an authoritative review of microplastics as vectors of environmental contaminants and provides a comprehensive coverage of their ecotoxicological and toxicological effects. Divided into four sections, this book outlines the current analytical techniques and applications for sampling, processing analysis, and data reporting of microplastics pollution in the environment, explores microplastics degradation and interaction with chemical pollutants, discusses the fate and behaviour of microplastics in the environment, and provides valuable insights about prevention, regulation and remediation of microplastics pollution.Written by interdisciplinary expert academics and practitioners, this reference work will appeal to a wide readership of students, researchers and professionals interested in this field, including marine scientists, environmental scientists, analytical chemists, organic chemists, biochemists, biologists, polymer scientists, and toxicologists.
This book introduces the growing problem of microplastics pollution in the soil and aquatic environment and its interaction with other chemical pollutants. Further, it provides a detailed review of existing analysis techniques for characterization, separation, and quantification of microplastics including their merits and demerits with possible suggestions. Additionally, the regulatory need and actions for improving the economic and quality of plastic recycling, curbing microplastic littering, and stakeholders, researchers, and recyclers challenges are reviewed comprehensively. Priorities are identified to bridge the knowledge gaps for appropriate management of existing challenges.Features:Provides a comprehensive description of the fate and environmental impact of microplastics, along with various characterization methodsOverviews the interaction of microplastics with other toxic chemicals and further their transportation in environment¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿Explains how microplastics enter in environment and its effect on biota and human health¿¿¿¿¿¿¿¿¿Analyses existing analytical techniques for characterization of microplasticsDescribes societal awareness related to use of plastic and discardingThis book focusses on graduate students, researchers in environmental engineering, ecological engineering, chemical and biological engineering, plastics and material sciences/engineering, waste management. materials science.
This book provides broad coverage of nuclear magnetic resonance (NMR) spectroscopy-based methods and applications for the analysis of metabolites in a wide range of biological samples, from biofluids, cells, animal models, human, to plants and foods. The applications range from mechanistic understanding, biomarker discovery, environmental studies, and drug discovery to nutrition, while NMR methods include global, targeted, and isotope tracer-based techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, NMR-Based Metabolomics: Methods and Protocols serves as a wealth of information for beginners as well as advanced practitioners and also as stepping stones for further advancesin the field of metabolomics.
The volume brings together some of the best experts in the field of modern metabolomics to discuss various techniques used today to study specific metabolite classes, and metabolomics in bacterial systems and mammalian systems. The chapters in this book cover topics such as Isotopic Ratio Outlier Analysis (IROA) for quantitative analysis; cholesterol and derivatives in ocular tissues using LC-MS/MS methods; microbial siderophores analysis by mass spectrometry; the metabolomic study of tissues in Parkinson¿s Disease; and NMR analysis in livestock metabolomics. Written in the highly successful Methods in Molecular Biology series format, the chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step readily reproducible laboratory protocols, tips on troubleshooting and avoiding pitfalls.Cutting-edge and thorough, Metabolomics: Methods and Protocols is an essential resource for any researcher interested inthis exciting and evolving field.
EPR spectroscopy is a versatile, nondestructive technique widely used in chemistry, biology, and physics. It detects molecules and materials with unpaired electrons making it a very selective technique that produces a wealth of information on such systems. Its high sensitivity makes it suitable in analyzing very small samples, single crystals, or reaction intermediates like radicals. This textbook takes a practical approach that introduces the basic concepts of EPR to sufficient detail to allow the reader to gain a basic knowledge of EPR and understand how experiments are carried out and how spectra are analyzed and interpreted. Many illustrative examples are included drawn from solid-state physics and bioinorganic chemistry. It is suitable as a short introduction for advanced undergraduate and beginning graduate students taking their first steps into EPR research.
Over the last two decades, advances in the design, miniaturization, and analytical capabilities of portable X-ray fluorescence (pXRF) instrumentation have led to its rapid and widespread adoption in a remarkably diverse range of applications in research and industrial fields. The impetus for this volume was that, as pXRF continues to grow into mainstream use, analysts should be increasingly empowered with the right information to safely and effectively employ pXRF as part of their analytical toolkit. This volume provides introductory and advanced-level users alike with readings on topics ranging from basic principles of pXRF and qualitative and quantitative approaches, through to machine learning and artificial intelligence for enhanced applications. It also includes fundamental guidance on calibrations, the mathematics of calculating uncertainties, and an extensive reference index of all elements and their interactions with X-rays. Contributing authors have provided a wealth of information and case studies in industry-specific chapters. These sections delve into detail on current standard practices in industry and research, including examples from agricultural and geo-exploration sectors, research in art and archaeology, and metals industrial and regulatory applications. As pXRF continues to grow in use in industrial and academic settings, it is essential that practitioners continue to learn, share, and implement informed and effective use of this technique. This volume serves as an accessible guidebook and go-to reference manual for new and experienced users in pXRF to achieve this goal.
This volume of Modern Aspects of Electrochemistry contains six chapters. The first four chapters are about phenomena of interest at the microscopic level and the last two are on phenomena at the macroscopic level. In the first chapter, Uosaki and Kita review various theoretical models that have been presented to describe the phenomena that occur at an electrolyte/ semiconductor interface under illumination. In the second chapter, Orazem and Newman discuss the same phenomena from a different point of view. In Chapter 3, Bogus lavsky presents state-of-the-art considerations of transmembrane potentials and other aspects of active transport in biological systems. Next, Burke and Lyons present a survey of both the theoretical and the experimental work that has been done on hydrous oxide films on several metals. The last two chapters cover the topics of the production of chlorine and caustic and the phenomena of electrolytic gas evol ution. In Chapter 5, Hine et al. describe the engineering aspects of the three processes used in the chi or-alkali industry, and in Chapter 6, Sides reviews the macroscopic phenomena of nucleation, growth, and detachment of bubbles, and the effect of bubbles on the conduc tivity of and mass transfer in electrolytes.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.