Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
High temperature superconducting theory drew controversy after the discovery of superconductors at close to room temperatures. However, a consistent microscopic theory of HT superconductivity based on bipolaron mechanism leads to a better understanding of microscopic and macroscopic description. By presenting aspects of superconductivity now joined in a strict theory rather than separate models this work is especially useful for graduate students.
This volume presents the proceedings of the Asia-Pacific Vibration Conference (APVC) 2019, "e;Vibration Engineering for a Sustainable Future,"e; emphasizing work devoted to experimental methods and verification. The APVC is one of the larger conferences held biannually with the intention to foster scientific and technical research collaboration among Asia-Pacific countries. The APVC provides a forum for researchers, practitioners, and students from, but not limited to, areas around the Asia-Pacific countries in a collegial and stimulating environment to present, discuss and disseminate recent advances and new findings on all aspects of vibration and noise, their control and utilization. All aspects of vibration, acoustics, vibration and noise control, vibration utilization, fault diagnosis and monitoring are appropriate for the conference, with the focus this year on the vibration aspects in dynamics and noise & vibration. This 18th edition of the APVC was held in November 2019 in Sydney, Australia. The previous seventeen conferences have been held in Japan ('85, '93, '07), Korea ('87, '97, '13), China ('89, '01, '11, '17), Australia ('91, '03), Malaysia ('95, '05), Singapore ('99), New Zealand ('09) and Vietnam ('15).
This book focuses on original theories and approaches in the field of mechanics. It reports on both theoretical and applied researches, with a special emphasis on problems and solutions at the interfaces of mechanics and other research areas. The respective chapters highlight cutting-edge works fostering development in fields such as micro- and nanomechanics, material science, physics of solid states, molecular physics, astrophysics, and many others. Special attention has been given to outstanding research conducted by young scientists from all over the world. This book is based on the 48th edition of the international conference "e;Advanced Problems in Mechanics"e;, which was held in 2020, in St. Petersburg, Russia, and co-organized by The Peter the Great St. Petersburg Polytechnic University and the Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, under the patronage of the Russian Academy of Sciences. It provides researchers and graduate students with an extensive overview of the latest research and a source of inspiration for future developments and collaborations in mechanics and related fields.
This monograph presents a comprehensive treatment of analytical solutions to problems in the area of non-equilibrium evaporation and condensation processes. The book covers, among others, topics such as systems of conversation equations for molecular fluxes of mass, momentum and energy within the Knudsen layer, spherical growth of vapor bubbles in volumes of highly superheated liquid. The target audience primarily comprises research experts in the field of thermodynamics and fluid dynamics, but the book may also be beneficial for graduate students alike.
This second edition adds newly established techniques and material properties codified in the past ten years to this authoritative reference. The volume retains its comprehensive coverage of damage and healing mechanics with updates to core topics and references and addition of other types of damages not covered in the first edition, including thermo-elastoviscoplastic damage-healing model for bituminous materials, damage in granular materials, damage in biological tissue, damage in rubber materials, damage crashworthiness in cars and airplanes, risk analysis in damaged structures, and evaluating damage with digital image correlation. The Handbook details computational modeling of constitutive equations as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employs a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. The Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures, second edition is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.
This is the first book which exploits concepts and tools of global nonlinear dynamics for bridging the gap between theoretical and practical stability of systems/structures, and for possibly enhancing the engineering design in macro-, micro- and nano-mechanics. Addressed topics include complementing theoretical and practical stability to achieve load carrying capacity; dynamical integrity for analyzing global dynamics, for interpreting/predicting experimental behavior, for getting hints towards engineering design; techniques for control of chaos; response of uncontrolled and controlled system/models in applied mechanics and structural dynamics by also considerung the effect of system imperfections; from relatively simple systems to multidimensional models representative of real world applications; potential and expected impact of global dynamics for engineering design.
Through his voluminous and in?uential writings, editorial activities, organi- tional leadership, intellectual acumen, and strong sense of history, Clifford - brose Truesdell III (1919¿2000) was the main architect for the renaissance of - tional continuum mechanics since the middle of the twentieth century. The present collection of 42 essays and research papers pays tribute to this man of mathematics, science, and natural philosophy as well as to his legacy. The ?rst ?ve essays by B. D. Coleman, E. Giusti, W. Noll, J. Serrin, and D. Speiser were texts of addresses given by their authors at the Meeting in memory of Clifford Truesdell, which was held in Pisa in November 2000. In these essays the reader will ?nd personal reminiscences of Clifford Truesdell the man and of some of his activities as scientist, author, editor, historian of exact sciences, and principal founding member of the Society for Natural Philosophy. The bulk of the collection comprises 37 research papers which bear witness to the Truesdellian legacy. These papers cover a wide range of topics; what ties them together is the rational spirit. Clifford Truesdell, in his address upon receipt of a Birkhoff Prize in 1978, put the essence of modern continuum mechanics succinctly as ¿conceptual analysis, analysis not in the sense of the technical term but in the root meaning: logical criticism, dissection, and creative scrutiny.
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice.
This thesis describes the development of a new technique to solve an important industrial inspection requirement for a high-value jet-engine component. The work ¿ and the story told in the thesis ¿ stretches all the way from the fundamentals of wave propagation in anisotropic material and ultrasonic array imaging through to device production and site trials. The book includes a description of a new method to determine crystallographic orientation from 2D ultrasonic array data. Another new method is described that enables volumetric images of an anisotropic material to be generated from 2D ultrasonic array data, based on measured crystallographic orientation. After extensive modeling, a suitable 2D array and deployment fixtures were manufactured and tested on in situ turbine blades in real engines. The final site trial indicated an order of magnitude improvement over the best existing technique in the detectability of a certain type of root cracking. The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades should be an inspiration for those starting out on doctoral degrees as it shows the complete development cycle from basic science to industrial usage.
tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful the- oretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the stan- dardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-discipIlnary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media.
Dieses Lehrbuch fuhrt mit Hilfe charakteristischer Fragestellungen aus der Maschinendynamik in die Schwingungslehre ein. Ziel ist es, das Verstandnis der Vorgehensweisen und das Denken in den Begriffen am Schwingungsverhalten einfach aufgebauter Maschinen zu vermitteln. Die vorliegende zweite Auflage wurde neu strukturiert und erganzt, um einen noch besseren Zugang zur Schwingungslehre mit Maschinendynamik zu gewahrleisten.
This book comprises the proceedings of the Conference and Exhibition on Non Destructive Evaluation (NDE 2020). The contents of the volume encompass a vast spectrum from Conventional to Advanced NDE including novel methods, instrumentation, sensors, procedures, and data analytics as applied to all industry segments for quality control, periodic maintenance, life estimation, structural integrity and related areas. This book will be a useful reference for students, researchers and practitioners.
This book gathers the proceedings of the 15th IFToMM World Congress, which was held in Krakow, Poland, from June 30 to July 4, 2019. Having been organized every four years since 1965, the Congress represents the world¿s largest scientific event on mechanism and machine science (MMS). The contributions cover an extremely diverse range of topics, including biomechanical engineering, computational kinematics, design methodologies, dynamics of machinery, multibody dynamics, gearing and transmissions, history of MMS, linkage and mechanical controls, robotics and mechatronics, micro-mechanisms, reliability of machines and mechanisms, rotor dynamics, standardization of terminology, sustainable energy systems, transportation machinery, tribology and vibration. Selected by means of a rigorous international peer-review process, they highlight numerous exciting advances and ideas that will spur novel research directions and foster new multidisciplinary collaborations.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.