Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Dynamic Environments Testing, Volume 7: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the seventh volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects Dynamic Environments Testing including papers on:Vibration Testing Shock TestingMulti-Axis Shaker Testing Test Fixture Design Dynamic Environment Definition Specifications for Acceptance Testing
Challenges in Mechanics of Time-Dependent Materials & Mechanics of Biological Systems and Materials, Volume 2 of the Proceedings of the 2022 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the second volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers in the following general technical research areas: Characterization Across Length ScalesExtreme Conditions & Environmental EffectsDamage, Fatigue and FractureStructure, Function and PerformanceRate Effects in ElastomersViscoelasticity & ViscoplasticityResearch in ProgressCellular Biomechanics and MechanobiologyBiofilms and Microbe MechanicsTraumatic Brain InjuryCardiac and Vascular BiomechanicsOrthopedic and Disease BiomechanicsTime Dependence of BiomaterialsExperimental Techniques in Biological and Biomimetic Systems
Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2022 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of six from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including:Recycled Constituent CompositesDamage DetectionAdvanced Imaging of CompositesMultifunctional MaterialsComposite InterfacesTunable Composites
This volume highlights the potentials as well as the limits and challenges of human breath analysis and describes the current efforts made to advance this promising technology from bench to bed. Human breath analysis is a young, interdisciplinary and innovative research field aiming to provide a smart and non-invasive diagnostic tool, which can be used for screening, detecting and monitoring of diseases or metabolic disorders. This book presents different approaches for breath analysis including real-time and offline mass spectrometry as well as optical and semiconductor gas sensing methods. Besides, the role of smart algorithms to improve the performance of those technologies and the importance of pulmonary function diagnostics for more reliable and meaningful breath analysis are highlighted. Finally, current application scenarios and future perspectives of breath analysis and pulmonary functioning tests are addressed.The volume is useful for researchers, who are new in the field, to easily get an overview of the current status and the challenges present in human breath analysis. Topics from fundamental research over targeted sensor development and application scenarios are described. Thus, this volume covers all development stages providing support and inspiration for engineers, medical doctors and scientists from various fields.
Written by the leading experts of this field, this book results from the International Symposium on "e;Single Molecule Machines on a Surface: Gears, Train of Gears, Motors, and Cars"e; which took place in Toulouse, France on November 24th - 25th, 2021. The different chapters focus on describing the use of single molecule mechanics on a surface and analyze the different steps leading to the design of a single molecule nanocar. The authors present how a single molecule is rotating, how a single molecule gear can participate to a train of molecule gears to propagate motion and how this knowledge is used for the design of nanocars. The way energy is provided to a single molecule and how this energy drives it onto the surface is also analyzed. A large portion of this volume is written by the eight teams selected to participate in the Nanocar Race II event. This book is of great use to graduate students, post-doctoral fellows and researchers who are interested in single molecule mechanics and who want to know more about the fundamentals and applications of this new research field.
This book focuses on nanomaterials with antibacterial properties. Antibacterial resistance is a growing concern that poses a serious threat to public health worldwide. This book looks at the fabrication, material's properties, and characterization of a range of metallic, bimetallic, and metal-oxide-based nanomaterials that can be exploited for their antimicrobial properties. A key focus of this book is its emphasis on 'green' synthesis of nanomaterials, as many conventional routes of nanomaterial fabrication do not fulfill key sustainability criteria in terms of their toxicity and lack of eco-friendliness. Additionally, this book introduces the application of nanoparticles to veterinary medicine. Given the ever-increasing global livestock population coupled with the emergence of drug-resistant pathogens of animal origin (bacterial, parasitic, and hemoprotozoa), the use of nanoparticles as antibacterial agents represents a paradigm shift in every aspect of veterinary care. Authored by scholars with combined expertise in nanomaterials and veterinary medicine, this book provides valuable information for researchers working on sustainable nanomaterials with antibacterial properties.
This book offers selected contributions on fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, multi-scale experimental and computational aspects.
This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range.The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.
This book consists of selected peer-reviewed articles from the International Conference on Computer Vision, High Performance Computing, Smart Devices and Networks (CHSN-2020), held at JNTU, Kakinada, India. The theme and areas of the conference include vast scope for latest concepts and trends in communication engineering, information theory and networks, signal, image and speech processing, wireless and mobile communication, Internet of Things, and cybersecurity for societal causes and humanitarian applications.
This book presents nanomaterials for cancer detection using a variety of state-of-the-art imaging techniques. Clinical applications are also highlighted. The unique size-dependent properties and convenient surfaces for molecular assembly make these nanomaterials essential for a variety of innovative imaging techniques. This book covers important imaging modalities, synthesis of nanoparticles with specific functional properties, and clinical applications including the development of anticancer drugs. The information presented here involves contributions from chemistry, materials science, materials characterization, cell engineering, and clinical testing.The book will be essential reading to experienced clinicians as well as a wide range of scholars and researchers interested in nanotechnology and imaging techniques for cancer detection.
This thesis provides the first atomic length-scale observation of the structural transformation (referred to as lattice reconstruction) that occurs in moire superlattices of twisted bilayer transition metal dichalcogenides (TMDs) at low (I < 2Es) twist angles. Such information is essential for the fundamental understanding of how manipulating the rotational twist-angle between two adjacent 2-dimensional crystals subsequently affects their optical and electrical properties.Studies using Scanning transmission electron microscopy (STEM), a powerful tool for atomic-scale imaging, were limited due to the complexity of the (atomically-thin) sample fabrication requirements. This work developed a unique way to selectively cut and re-stack monolayers of TMDs with a controlled rotational twist angle which could then be easily suspended on a TEM grid to meet the needs of the atomically thin sample requirements. The fabrication technique enabled the study of the two common stacking-polytypes including 3R and 2H (using MoS2 and WS2 as the example) as well as their structural evolution with decreasing twist-angle.Atomic-scale studies were followed by a comprehensive investigation of their electronic properties using scanning probe microscopy and electrical transport measurements of the artificially-engineered structures. The electronic structure of two common stacking-polytypes (3R and 2H) were strikingly different, as revealed by conductive atomic force microscopy. Further studies focused on the 3R-stacking polytype to reveal room-temperature out-of-plane ferroelectricity using tools such as kelvin probe force microscopy, scanning electron microscopy and electrical transport measurements. This work highlights that the unique intrinsic properties of TMDs (i.e. semiconductors with strongly light-matter interaction) combined with the additional twisted degree-of-freedom has great potential to create atomically thin transistors/LEDs with built-in memory storage functions and will further aid in the development of the next generation of optoelectronics.
This PhD thesis reports on investigations of several oxide-based materials using advanced infrared and Raman spectroscopy techniques and in combination with external stimuli such as high magnetic or electric field, sptial confinement in thin film heterostructures and the radiation with UV light. This leads to new results in the fields of superconductivity, electronic polarization states and nanoscale phenomena.Among these, the observation of anomalous polar moments is of great relevance for understanding the electric-field-induced metal-to-insulator transistion; and the demonstration that confocal Raman spectroscopy of backfolded acoustic photons in metal-oxide multilayers can be used as a powerful characterization tool for monitoring their interface properties and layer thickness is an important technical development for the engineering of such functional oxide heterostructures.
This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area.The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the StranskiKrastanov growth mode, is presented.
This volume explores the latest advancements and techniques used to study cell analysis, their capabilities, and the type of results that can be obtained. The chapters in this book cover topics such as FACS; fluorescence microscopy; organic spectroscopy such as MALDI; inorganic spectroscopy such as ICP-MS; and sequencing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and practical, Single Cell Analysis: Methods and Protocols is a valuable tool for any researcher interested in learning more about this important and developing field.
This book elucidates the peculiar phenomenon of entropy/enthalpy compensation that takes place in high performance liquid chromatography (HPLC) of polymers. Numerous publications, including some books, are devoted to molecular characterization of synthetic polymers, materials presently produced in large and steadily growing quantities, applying methods of HPLC. A knowledge of the molecular characteristics of polymers is indispensable, not only for their proper applications but also for their recycling and remediation. Polymer scientists generally focus on synthesis and potential applications of polymers while not giving due attention to an important central link, their comprehensive characterization in context of development of structure-property correlations. To fill this gap is one of the aims of the present book. The process of entropy/enthalpy compensation plays a decisive role in the advanced method of polymer characterization such as liquid chromatography at critical conditions, eluent gradient interaction chromatography, and temperature gradient interaction chromatography. All chemists working on any aspect of polymer science will find this book a valuable resource for the development of structure-property correlations.
This book provides a selection of recent developments in scanning ion conductance microscopy (SICM) technology and applications. In recent years, SICM has been applied in an ever-increasing number of areas in the bioanalytical sciences. SICM is based on an electrolyte-filled nanopipette with a nanometer-scale opening, over which an electric potential is applied. The induced ion current is measured, which allows to directly or indirectly quantify various physical quantities such as pipette-sample distance, ion concentration, sample elastic modulus among many others. This makes SICM well suited for applications in electrolytes - most prominently for the study of live cells.This book starts with a historic overview starting from the days of the invention of SICM by Paul Hansma at the University of California at Santa Barbara in 1989. SICM is a member of the family of scanning probe microscopies. It is related to another prominent member of the family, atomic force microscopy (AFM), which has found application in almost any field of nanoscale science. The advantages and disadvantages of SICM over AFM are also outlined. One of the most effective and break-through applications of SICM nanopipettes is in electrochemistry. The different routes and applications for doing electrochemistry using nanopipettes are also discussed. In addition the book highlights the ability of SICM for surface positioning with nanometer precision to open up new vistas in patch clamp measurements subcellular structures. Finally the book presents one research area where SICM has been making a lot of contributions, cardiac research and the endeavors to combine SICM with super-resolution optical microscopy for highest-resolution joint topography and functional imaging.
This book provides a detailed, self-contained description of automatic indexing of crystal diffraction patterns, considering both ab initio indexing and indexing of patterns originating from known structures. Introductory chapters equip the reader with the necessary basic knowledge of geometric crystallography, as well as kinematic and dynamic theories of crystal diffraction. Subsequent chapters delve and describe ab initio indexing of single crystal diffraction patterns and indexing of patterns for orientation determination. The book also reviews methods of indexing powder diffraction and electron spot-type patterns, as well the subject of multigrain indexing. Later chapters are devoted to diffraction by helical structures and quasicrystals, as well as some aspects of lattice parameter refinement and strain determination.The book is intended equally for materials scientists curious about 'nuts and bolts' of diffraction pattern indexing and orientation mapping systems, as well as interdisciplinary researchers from physics, chemistry, and biology involved in crystallographic computing. It provides a rigorous, yet accessible, treatment of the subject matter for graduate students interested in understanding the functioning of diffraction pattern indexing engines.
This volume provides a wide spectrum of multidisciplinary approaches for studying RNA structure and dynamics, including detailed accounts of experimental and computational procedures. Chapters guide readers through cryo-electron microscopy, crystallography, isothermal titration calorimetry, small angle X-ray scattering, single-molecule Forster Energy transfer, X-ray free electron laser, atomic force microscopy, computational simulation, and prediction. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols.Authoritative and cutting-edge, RNA Structure and Dynamics aims to be a foundation for future studies and to be a source of inspiration for new investigations in the field.
This book compares premetered methods to self-metered processes and addresses general properties of premetered methods. It presents specific properties of slot, slide, and curtain coating. The book is divided in three parts:Part I compares premetered methods to self-metered processes. It explains the term "e;premetered,"e; which is an expression of the law of mass conservation, and discusses the physical fluid properties that are relevant for premetered processes. Furthermore, it presents in detail the various basic flow fields that make up premetered coating methods. Lastly, it introduces the concepts of wall shear stress, residence time, and hydrodynamic assist to dynamic wetting. Part II addresses general properties of premetered methods, such as the fluid conditioning and delivery systems, the nominal film thickness, and the film thickness uniformity, both in machine and cross-web directions (die design). It lists the attractive features of simultaneous multilayer applications, including an explanation of how mixing of adjacent layers can be prevented. This section concludes by revisiting examples of economic considerations.Part III presents specific properties of slot, slide, and curtain coating. It examines various topics, such as coating equipment and coating configurations, coating modes, details of the various flow fields, operating window and process limitations, and process optimization.
This book provides a comprehensive overview of positron profilometry, specifically focusing on the analysis of defect depth distribution in materials. Positron profilometry plays a crucial role in understanding and characterizing defects in a wide range of materials, including metals, semiconductors, polymers, and ceramics. By analyzing the depth distribution of defects, researchers can gain insights into various material properties, such as crystal structure, defect density, and diffusion behavior. The author's extensive research spanning a period of two decades has primarily centered on subsurface zones. These regions, located beneath the surface and subjected to various surface processes, play a crucial role in generating defect distributions. Three experimental techniques and their data analysis are described in detail: a variable-energy positron beam (VEP) called sometimes a slow positron beam, a technique called implantation profile depth scanning (DSIP), and a sequential etching(SET) technique. The usability of these techniques is illustrated by many examples of measurements by the author and others.
Forgeries present a daunting problem to art historians, museums, galleries and curators who face challenges in determining the authenticity of paintings. Recent progress in science has led to the development of new methods for investigating works of art, and can provide new insights into the materials found in paintings. The rise in the value of paintings together with the knowledge and skills of forgers highlights the need to develop reliable scientific procedures to identify fakes. Given the complexity of materials in paintings and the convergence of various disciplines, a methodological approach for nvestigations of paintings is based on art historical, curatorial, aesthetic, technical and scientific evaluation. In this book sophisticated digital and analytical techniques are reviewed for the identification of materials (pigments, binders, varnishes, adhesives) and the physical characteristics of paintings such as brushstrokes, craquelure and canvas weaves. This book presents an updated overview of both non-invasive and micro-invasive techniques that enable the material characterization of paintings. The materials constituting a painting are reviewed, as are ways that changes in materials over time can provide insights into chronology and physical history. State-of the art digital metods including multi and hyper-spectral imaging and computational approaches to data treatment will be presented. Analytical techniques developed and optimized to characterize binders, varnishes, and pigments are reviewed, focusing on materials which can provide information on ageing or provenance. Case studies of applications of synchrotron-based methods and the analysis of paintings are given, as are chapters devoted to legal aspects related to authenticity. Chapter 1 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book reviews work that covers everything from basic chemistry to advanced applications. Chitin and chitosan are used in a plethora of applications from wastewater treatment to prosthetics. After introducing the subject of polysaccharides as a whole, the authors turn to the preparation of chitin and chitosan and the characterization of the latter. The book provides information on chitin chemistry, extraction of chitin, chitosan preparation processes, and the applications of their derivatives in various fields. Among the applications that are included in detail are the adsorption of heavy metals for pollution prevention and clean-up, biosensors, cosmetics, various medical applications from anti-tumor activity to bone tissue engineering, agriculture and food production, and proton exchange membranes for fuel cells.Chitin and Chitosan features:* information on molecular structure, synthesis, properties, and latest research related to chitin and chitosan;* coverage of a wide range of topics from the properties of chitosan to its derivatives and applications;* in-depth information on biomedical applications of chitin and chitosan; and* information that can be applied to other biopolymer processing engineering areas.This book will be of interest to practitioners working in a wide variety of industries for which chitin and chitosan are useful materials, researchers in biosensors and heavy-metal adsorption, and to academic researchers investigating the properties, preparation, and uses of these materials.
This book provides information on the characteristics, strategies and applications of layered materials. It sheds light on layerdness-dependent properties of Van der Waals solids for potential applications. The properties of various layered materials prepared using different experimental strategies are described. Further, the first-principles calculations are given to devise a strategy to investigate layeredness in materials. The structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport characteristics of the layered materials are elaborated in detail. This book provides an updated source of information on layered materials for students, researchers, and professionals.
The primary aim of the proposed book is to provides understanding of the sophisticated modern characterisation techniques in domain of civil engineering. It systematically covers physical, chemical, mineralogical and microstructural characterisation imperative to evaluate the construction materials and their performance.
This textbook presents the fundamental concepts and application of optical mineralogy in a very simple, systematic, and comprehensive way. The book is organized into 2 parts: Part I deals with the theory and techniques, and Part II provides a description of the optical properties of common minerals. The book is written in a lucid manner so that students are able to understand the realization behind the concepts in optics and the methods employed to elicit information about the interior of mineral crystals. All the subject fundamentals and related derivations are discussed in an easy and comprehensive way to make the students strong in the basics of optical mineralogy. The key features lie in the illustrations, examples, and questions at the end of each chapter to provide students with practical usage insights into optical mineralogy. The book benefits students who are taking introductory courses in optics to characterize rock minerals.
The book presents Russian experience in researching and developing theoretical and experimental problems of heavy concrete elements and constructions with functionally gradient structure, manufactured by using mechanical and electromagnetic vibrations, and broadly utilized in different areas of industry. Original theoretical, experimental and numerical methods are developed for the analysis and design of the aggregate and local characteristics of vibrated, centrifuged and vibro-centrifuged concrete rings and columns. The promising experimental techniques and results presented in this volume have been supported by Russian patents and used for improvement of reinforced concrete products.
This volume highlights the latest advances, innovations, and applications in the field of metal forming, as presented by leading international researchers and engineers at the 14th International Conference on Technology of Plasticity (ICTP), held in Mandelieu-La Napoule, France on September 24-29, 2023. It covers a diverse range of topics such as manufacturing processes & equipment, materials behavior and characterization, microstructure design by forming, surfaces & interfaces, control & optimization, green / sustainable metal forming technologies, digitalization & AI in metal forming, multi-material processing, agile / flexible metal forming processes, forming of non-metallic materials, micro-forming and luxury applications. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
This textbook teaches important material and technological fundamentals in various technical systems and applied geoscientific fields. Beginning with the mineralogical characteristics of selected non-metallic raw materials and industrial minerals, this book presents the connections between properties and industrial applications and discusses the environment-relevant aspects as well as problems of biomineralogy. An introduction is given to important mineralogical and physico-chemical aspects of ceramic materials such as silicate ceramics, glass, cement, refractory materials as well as an overview about material synthesis.This makes it the first textbook to present the fundamentals of applied mineralogy as a material-related geoscience in a compact form and to show important bridges to industrial issues and approaches to solutions. It is aimed primarily at undergraduate students of geosciences and materials science, but is also suitable for related disciplines and practical applications.
This book provides a comprehensive introduction to all aspects of low-energy ion-solid interaction from basic principles to advanced applications in materials science. It features a balanced and insightful approach to the fundamentals of the low-energy ion-solid surface interaction, focusing on relevant topics such as interaction potentials, kinetics of binary collisions, ion range, radiation damages, and sputtering. Additionally, the book incorporates key updates reflecting the latest relevant results of modern research on topics such as topography evolution and thin-film deposition under ion bombardment, ion beam figuring and smoothing, generation of nanostructures, and ion beam-controlled glancing angle deposition. Filling a gap of almost 20 years of relevant research activity, this book offers a wealth of information and up-to-date results for graduate students, academic researchers, and industrial scientists working in these areas.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.