Udvidet returret til d. 31. januar 2025

Learning with Limited Samples - Lisha Chen - Bog

Bag om Learning with Limited Samples

Deep learning has achieved remarkable success in many machine learning tasks such as image classification, speech recognition, and game playing. However, these breakthroughs are often difficult to translate into real-world engineering systems because deep learning models require a massive number of training samples, which are costly to obtain in practice. To address labeled data scarcity, few-shot meta-learning optimizes learning algorithms that can efficiently adapt to new tasks quickly. While meta-learning is gaining significant interest in the machine learning literature, its working principles and theoretic fundamentals are not as well understood in the engineering community. This review monograph provides an introduction to meta-learning by covering principles, algorithms, theory, and engineering applications. After introducing meta-learning in comparison with conventional and joint learning, the main meta-learning algorithms are described, as well as a general bilevel optimization framework for the definition of meta-learning techniques. Then, known results on the generalization capabilities of meta-learning from a statistical learning viewpoint are summarized. Applications to communication systems, including decoding and power allocation, are discussed next, followed by an introduction to aspects related to the integration of meta-learning with emerging computing technologies, namely neuromorphic and quantum computing. The monograph concludes with an overview of open research challenges.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781638281368
  • Indbinding:
  • Paperback
  • Sideantal:
  • 144
  • Udgivet:
  • 25. januar 2023
  • Størrelse:
  • 156x9x234 mm.
  • Vægt:
  • 231 g.
  • 8-11 hverdage.
  • 5. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Learning with Limited Samples

Deep learning has achieved remarkable success in many machine learning tasks such as image classification, speech recognition, and game playing. However, these breakthroughs are often difficult to translate into real-world engineering systems because deep learning models require a massive number of training samples, which are costly to obtain in practice. To address labeled data scarcity, few-shot meta-learning optimizes learning algorithms that can efficiently adapt to new tasks quickly. While meta-learning is gaining significant interest in the machine learning literature, its working principles and theoretic fundamentals are not as well understood in the engineering community. This review monograph provides an introduction to meta-learning by covering principles, algorithms, theory, and engineering applications. After introducing meta-learning in comparison with conventional and joint learning, the main meta-learning algorithms are described, as well as a general bilevel optimization framework for the definition of meta-learning techniques. Then, known results on the generalization capabilities of meta-learning from a statistical learning viewpoint are summarized. Applications to communication systems, including decoding and power allocation, are discussed next, followed by an introduction to aspects related to the integration of meta-learning with emerging computing technologies, namely neuromorphic and quantum computing. The monograph concludes with an overview of open research challenges.

Brugerbedømmelser af Learning with Limited Samples



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.