Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
"This collection of four short courses looks at group representations, graph spectra, statistical optimality, and symbolic dynamics, highlighting their common roots in linear algebra. Aimed at researchers and beginning Ph.D. students, it includes copious exercises, notes, and references, leading the reader from the basics to high-level applications"--
From the bestselling author of Quantum Computing for Everyone, a concise, accessible, and elegant approach to mathematics that not only illustrates concepts but also conveys the surprising nature of the digital information age.Most of us know something about the grand theories of physics that transformed our views of the universe at the start of the twentieth century: quantum mechanics and general relativity. But we are much less familiar with the brilliant theories that make up the backbone of the digital revolution. In Beautiful Math, Chris Bernhardt explores the mathematics at the very heart of the information age. He asks questions such as: What is information? What advantages does digital information have over analog? How do we convert analog signals into digital ones? What is an algorithm? What is a universal computer? And how can a machine learn?The four major themes of Beautiful Math are information, communication, computation, and learning. Bernhardt typically starts with a simple mathematical model of an important concept, then reveals a deep underlying structure connecting concepts from what, at first, appear to be unrelated areas. His goal is to present the concepts using the least amount of mathematics, but nothing is oversimplified. Along the way, Bernhardt also discusses alphabets, the telegraph, and the analog revolution; information theory; redundancy and compression; errors and noise; encryption; how analog information is converted into digital information; algorithms; and finally, neural networks. Historical anecdotes are included to give a sense of the technology at that time, its impact, and the problems that needed to be solved. Taking its readers by the hand, regardless of their math background, Beautiful Math is a fascinating journey through the mathematical ideas that undergird our everyday digital interactions.
This textbook provides a mathematical introduction to linear systems, with a focus on the continuous-time models that arise in engineering applications such as electrical circuits and signal processing. The book introduces linear systems via block diagrams and the theory of the Laplace transform, using basic complex analysis. The book mainly covers linear systems with finite-dimensional state spaces. Graphical methods such as Nyquist plots and Bode plots are presented alongside computational tools such as MATLAB. Multiple-input multiple-output (MIMO) systems, which arise in modern telecommunication devices, are discussed in detail. The book also introduces orthogonal polynomials with important examples in signal processing and wireless communication, such as Telatar¿s model for multiple antenna transmission. One of the later chapters introduces infinite-dimensional Hilbert space as a state space, with the canonical model of a linear system. The final chapter covers modern applications to signal processing, Whittaker¿s sampling theorem for band-limited functions, and Shannon¿s wavelet. Based on courses given for many years to upper undergraduate mathematics students, the book provides a systematic, mathematical account of linear systems theory, and as such will also be useful for students and researchers in engineering. The prerequisites are basic linear algebra and complex analysis.
This textbook offers undergraduates a self-contained introduction to advanced topics not covered in a standard calculus sequence. The author¿s enthusiastic and engaging style makes this material, which typically requires a substantial amount of study, accessible to students with minimal prerequisites. Readers will gain a broad knowledge of the area, with approaches based on those found in recent literature, as well as historical remarks that deepen the exposition. Specific topics covered include the binomial theorem, the harmonic series, Euler's constant, geometric probability, and much more. Over the fifteen chapters, readers will discover the elegance of calculus and the pivotal role it plays within mathematics.A Compact Capstone Course in Classical Calculus is ideal for exploring interesting topics in mathematics beyond the standard calculus sequence, particularly for undergraduates who may not be taking more advanced math courses. It would also serve as a useful supplement for a calculus course and a valuable resource for self-study. Readers are expected to have completed two one-semester college calculus courses.
Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion.
"Differential Equations" by Dr. Upton is a captivating journey through the mathematical landscapes of calculus, offering a rich exploration of historical context, first and second-order equations, systems, Laplace transforms, numerical methods, and real-world applications. With insightful content and advanced topics, this book inspires a deep understanding of complex concepts while providing practical applications in science and engineering.
This book presents the research outcomes from cooperative projects with industrial partners. It showcases the practical relevance of the research, features the knowledge exchange. The papers cover a wide range of engineering disciplines, highlighting the impact of these collaborations in addressing real-world challenges and advancing technological developments.
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach.A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses onfinite difference and finite element methods. Computer-aided calculation with Maple¿ completes the book. Throughout, three fundamental examples are studied with different tools: Poisson¿s equation, the heat equation, and the wave equation on Euclidean domains. The Black¿Scholes equation from mathematical finance is one of several opportunities for extension.Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.
This monograph presents the most recent developments in the study of Hamilton-Jacobi Equations and control problems with discontinuities, mainly from the viewpoint of partial differential equations. Two main cases are investigated in detail: the case of codimension 1 discontinuities and the stratified case in which the discontinuities can be of any codimensions. In both, connections with deterministic control problems are carefully studied, and numerous examples and applications are illustrated throughout the text.After an initial section that provides a ¿toolbox¿ containing key results which will be used throughout the text, Parts II and III completely describe several recently introduced approaches to treat problems involving either codimension 1 discontinuities or networks. The remaining sections are concerned with stratified problems either in the whole space R^N or in bounded or unbounded domains with state-constraints. In particular, the use of stratified solutions to treat problems with boundary conditions, where both the boundary may be non-smooth and the data may present discontinuities, is developed. Many applications to concrete problems are explored throughout the text ¿ such as Kolmogorov-Petrovsky-Piskunov (KPP) type problems, large deviations, level-sets approach, large time behavior, and homogenization ¿ and several key open problems are presented.This monograph will be of interest to graduate students and researchers working in deterministic control problems and Hamilton-Jacobi Equations, network problems, or scalar conservation laws.
This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.
This text covers a first course in bilinear maps and tensor products intending to bring the reader from the beginning of functional analysis to the frontiers of exploration with tensor products. Tensor products, particularly in infinite-dimensional normed spaces, are heavily based on bilinear maps. The author brings these topics together by using bilinear maps as an auxiliary, yet fundamental, tool for accomplishing a consistent, useful, and straightforward theory of tensor products. The author¿s usual clear, friendly, and meticulously prepared exposition presents the material in ways that are designed to make grasping concepts easier and simpler. The approach to the subject is uniquely presented from an operator theoretic view. An introductory course in functional analysis is assumed. In order to keep the prerequisites as modest as possible, there are two introductory chapters, one on linear spaces (Chapter 1) and another on normed spaces (Chapter 5), summarizing the background material required for a thorough understanding. The reader who has worked through this text will be well prepared to approach more advanced texts and additional literature on the subject.The book brings the theory of tensor products on Banach spaces to the edges of Grothendieck's theory, and changes the target towards tensor products of bounded linear operators. Both Hilbert-space and Banach-space operator theory are considered and compared from the point of view of tensor products. This is done from the first principles of functional analysis up to current research topics, with complete and detailed proofs. The first four chapters deal with the algebraic theory of linear spaces, providing various representations of the algebraic tensor product defined in an axiomatic way. Chapters 5 and 6 give the necessary background concerning normed spaces and bounded bilinear mappings. Chapter 7 is devoted to the study of reasonable crossnorms on tensor product spaces, discussing in detail the important extreme realizations of injective and projective tensor products. In Chapter 8 uniform crossnorms are introduced in which the tensor products of operators are bounded; special attention is paid to the finitely generated situation. The concluding Chapter 9 is devoted to the study of the Hilbert space setting and the spectral properties of the tensor products of operators. Each chapter ends with a section containing ¿Additional Propositions" and suggested readings for further studies.
This book constitutes the refereed proceedings of the 21st International Workshop on Approximation and Online Algorithms, WAOA 2023, held in Amsterdam, The Netherlands, during September 7¿8, 2023The 16 full papers included in this book are carefully reviewed and selected from 43 submissions. The topics of WAOA 2023 were algorithmic game theory, algorithmic trading, coloring and partitioning, competitive analysis, computational advertising, computational finance, cuts and connectivity, FPT-approximation algorithms, geometric problems, graph algorithms, inapproximability results, mechanism design, network design, packing and covering, paradigms for the design and analysis of approximation and online algorithms, resource augmentation, and scheduling problems
Over the course of his distinguished career, Jörg Eschmeier made a number of fundamental contributions to the development of operator theory and related topics. The chapters in this volume, compiled in his memory, are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
This concise book reviews methods used for gluing space-time manifolds together. It is therefore relevant to theorists working on branes, walls, domain walls, concepts frequently used in theoretical cosmology, astrophysics, and gravity theory. Nowadays, applications are also in theoretical condensed matter physics where Riemannian geometry appears. The book also reviews the history of matching conditions between two space-time manifolds from the early times of general relativity up to now.
This book provides an introduction to the broad topic of the calculus of variations. It addresses the most natural questions on variational problems and the mathematical complexities they present.Beginning with the scientific modeling that motivates the subject, the book then tackles mathematical questions such as the existence and uniqueness of solutions, their characterization in terms of partial differential equations, and their regularity. It includes both classical and recent results on one-dimensional variational problems, as well as the adaptation to the multi-dimensional case. Here, convexity plays an important role in establishing semi-continuity results and connections with techniques from optimization, and convex duality is even used to produce regularity results. This is then followed by the more classical Hölder regularity theory for elliptic PDEs and some geometric variational problems on sets, including the isoperimetric inequality andthe Steiner tree problem. The book concludes with a chapter on the limits of sequences of variational problems, expressed in terms of ¿-convergence.While primarily designed for master's-level and advanced courses, this textbook, based on its author's instructional experience, also offers original insights that may be of interest to PhD students and researchers. A foundational understanding of measure theory and functional analysis is required, but all the essential concepts are reiterated throughout the book using special memo-boxes.
This book covers electrostatic properties of hyperbolic metamaterials (HMMs), a fascinating class of metamaterials which combine dielectric and metal components. Due to the hyperbolic topology of the isofrequency surface in HMMs, the so-called resonance cone direction exists, and as a result, propagation of quasi-electrostatic waves, or more commonly, electrostatic waves close to the resonance cone with large wave vectors, is possible. However, the investigation of electrostatic wave properties in HMMs is largely overlooked in most works on the subject, and the purpose of this monograph is to fill this gap. This book gives a thorough theoretical treatment of propagation, reflection, and refraction of electrostatic waves in HMMs of various dimensions and geometries. It will be of interest to students and researchers who work on electrical and optical properties of metamaterials.
This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. The volume begins with an overview of analytical problems related to crowd modeling. Attention is then given to the importance of considering the social and psychological factors that influence crowd behavior ¿ such as emotions, communication, and decision-making processes ¿ in order to create reliable models. Finally, specific features of crowd behavior are explored, including single-file traffic, passenger movement, modeling multiple groups in crowds, and the interplay between crowd dynamics and the spread of disease.Crowd Dynamics, Volume 4 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.
This book describes recent collaborations combining the expertise of applied mathematicians, engineers and geophysicists within a research training group (RTG) on "Modeling, Simulation and Optimization of Fluid Dynamic Applications¿, funded by the Deutsche Forschungsgemeinschaft (DFG). The focus is on mathematical modeling, adaptive discretization, approximation strategies and shape optimization with PDEs. The balanced research program is based on the guiding principle that mathematics drives applications and is inspired by applications. With this leitmotif the RTG advances research in Modeling, Simulation and Optimization by an interdisciplinary approach, i.e., to stimulate fundamental education and research by highly complex applications and at the simultaneously transfer tailored mathematical methods to applied sciences. The reported research involves nine projects and addresses challenging fluid dynamic problems inspired by applied sciences, such as climate research & meteorology, energy, aerospace & marine engineering, or medicine. More fundamental research concerning analysis, approximation and numerics is also covered.The material represents a successful attempt to exchange research paradigms between different disciplines and thus displays a modern approach to basic research into scientifically and societally relevant contemporary problems.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.