Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
The fourth edition of Process Validation in Manufacturing of Biopharmaceuticals is a practical and comprehensive resource illustrating the different approaches for successful validation of biopharmaceutical processes.
This book includes basics of impedance spectroscopy, substrate compatibility issues, integration capabilities, and several applications in detection of different analytes. It helps explore the importance of this technique in biological detection, micro/nano-fabricated platforms and respective integration, and biological synthesis schemes.
The book manuscript covers the morphological characteristics, ethnopharmacological properties, isolated and identified structurally diverse secondary metabolites, biological and pharmacological activities of medicinal plants.
Carbon membranes have great advantages of strong mechanical strength and high chemical stabilities, as well as high separation performance to reach the industrial attractive region. Further improvement on membrane performance can potentially offset the relatively high production cost compared to polymeric membranes. However, there are still some challenges related to fabrication of asymmetric carbon membranes, the controlling of structure and pore-size and module up-scaling for commercial application. The aim of this book is to provide the fundamentals on carbon membrane materials for the young researchers and engineers to develop frontier membrane materials for energy efficient separation process.This book describes the status and perspectives of both self-supported and supported carbon membranes from fundamentals to applications. The key steps on the development of high performance carbon membranes including precursor selection, tuning carbon membrane structure and regeneration are discussed. In the end, different potential applications both in gas and liquids separation are well described, and the future directions for carbon membrane development were pointed out. To this end, membrane science and engineering are set to play crucial roles as enabling technologies to provide energy efficient and cost-effective future solutions for energy and environment related processes. Based on this approach the research projects which are trying to find attractive carbon materials in our days are many. The published papers, per year, in the topic of carbon membranes, especially for biogas upgrading, natural gas sweetening and hydrogen purification, are numerous with very high impact. However, only few are the books which include relevant to the topic of carbon membrane technology. This book offers the condensed and interdisciplinary knowledge on carbon membranes, and provides the opportunity to the scientists who are working in the field of carbon membrane technology for gas and liquid separations to present, share, and discuss their contributions within the membrane community.
Microplastics and nanoplastics have been recently found in most environmental media and in living organisms, thus representing a serious health concern of yet poorly known adverse consequences. This book summarizes recent findings on the sources, behavior, transformation, toxicity and remediation of microplastics, with focus on soils, water, wastewater, air, soils, plants and corals. Advanced methods for sampling, characterization, removal and degradation of microplastics.
This book describes analytical instruments widely used to characterize the nanostructured materials. It provides information about how to assess material quality, defects, the state of surfaces and interfaces, element distributions, strain, lattice distortion, and electro-optical properties of materials and devices. The information provided by this book can be used as a back-up for material processing, material design and debugging of device performance. The basic principles and methodology of each analysis technique is described in separate chapters, adding historic perspectives and recent developments. The data analysis, from simple to advanced level, is introduced by numerous examples, mostly taken from the authors' fields of research; semiconductor materials, metals and oxides. The book serves as a valuable guide for scientists and students working in materials science, physics, and engineering, who wish to become acquainted with the most important analytical techniques for nanomaterials.
This volume builds upon the successful book Lanthanide Luminescence published in the Springer Series on Fluorescence in 2011. Since its publication, the field of lanthanide spectroscopy and the areas in which the light emission properties of the f-elements are used have experienced substantial advances. The luminescence properties of lanthanide ions make them unique candidates for a myriad of optical applications. This book highlights and reviews the latest research in areas ranging from luminescence thermometry to imaging, sensing and photonic applications of these fascinating elements. Each chapter provides a comprehensive introduction to a specific area of application of lanthanide luminescence and extensively reviews seminal papers and current research literature. Given its interdisciplinary scope, the book appeals to scientists and advanced students in physics, chemistry and materials science interested in compounds and materials with optical properties.
Essential oils are simply the volatile oils of plants. These are concentrated liquids contain many terpenes, alkaloids and alcohols etc. Various compounds of essential oils have bioactive properties such as antimicrobial, anti-cancer, anti-diabetic, anti-viral and anti-fungal etc. This book describes the sources of essential oils, extraction and production method, characterizing tools, bioactivity, and various applications in the field of industries, daily usage, agriculture, health, and food.
This book provides an overview of biosurfactants as biobased compounds, and highlights novel applications in several industries, including biotech, food processing, cosmetic, oil recovery/petroleum, pharmaceutical, detergent and textile. In the past few decades, biosurfactants have emerged as promising alternative surface-active agents to chemical surfactants due to their high biodegradability, low toxicity, multi-functionality under extreme pH and temperature conditions, long-term physicochemical stability, and their production from renewable sources. This book presents the fundamental aspects (classification, structure, genetics, and properties) of biosurfactants and how their features contribute to the global bioeconomy.Chapters from expert contributors discuss the latest screening, purification and characterization methods of new biosurfactants and biosurfactant-producing fungi and bacteria, including extremophiles. Particular attention is given to the role of biosurfactants in the formulation of sustainable agrochemicals, and their application as eco-friendly mosquitocidal agents, and biopesticides. Readers will discover a perspective on the antiviral activity of biosurfactants, in which the latest in vitro and in silico studies are discussed. Readers will also find more about the foremost therapeutic attributes of biosurfactant-mediated nanoparticles as next-generation drug delivery systems.Given its breadth, this book appeals to a wide readership, from students and academic researchers to scientists and professionals from industry, interested in the study and application of microbial surfactants.
This volume details aspects and applications of interfacing capillary electrophoresis (CE) with mass spectrometry (MS). Chapters guide readers through approaches based on different types of CE-MS interfaces such as (nano)sheath liquid, porous tip, and liquid junction, as well as various capillary coatings, and a broad range of applications including several top-down and bottom-up proteomic approaches. Additionally, a list of analyte targets was provided consisting of amphetamines, antibiotics, carbohydrates (including glycosaminoglycans and glycopeptides), enantiomers, extracellular matrix metabolites, monoclonal antibodies, and nanoparticles, and therefore covers numerous fields of applications such as pharmaceutical, biomedical, food, agrochemical, and environmental analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Capillary Electrophoresis-Mass Spectrometry: Methods and Protocols aims to provide highly valuable information for both beginners and experts in the field be it students, technical staff, and scientists.
This textbook describes the theory underlying each instrumental procedure and applications of all instrumental methods. It comprehensively covers the instrumental methods of chemical analysis, chromatography, thermal methods of chemical analysis, electrochemical methods, and instrumental methods of analysis of inorganic compounds. These include thermogravimetric analysis, differential thermal analysis, thermometric titrations, and some miscellaneous thermal methods like derivative thermogravimetric analysis, thermobarography, differential scanning calorimetry, thermomechanical analysis, and electric thermal analysis, flame photometry, fluorimetry and phosphorimetry, nephelometric and turbidimetric techniques, refractory and interferometry, and X-ray methods. Each chapter consists a set of problems to aid self-learning. This textbook is highly useful for graduate and postgraduate students on chemistry and its allied fields. It can also be used as a quick reference material byprofessionals working in the various fields of chemistry and material science.
This book illustrates recent advances in developing sensitive and selective electrochemical biosensors for their whole blood application. Known to be a cutting-edge and fast-growing technology, electrochemical biosensors demonstrate their potential in laboratories, industries, and healthcare to achieve specific and direct target detection in complex media, and have become an emerging technology for guiding personalized medicine. The book first demonstrates methods and models to cover the detection of a variety of target molecules in whole blood, including ions, small molecules, nucleic acids, proteins, cells, etc. Then, it provides comments on various detection strategies employed to improve sensors' sensitivity, specificity, selectivity, and reproducibility as well as presenting the laws and principles. In addition, it summarizes achievements and challenges from recent years. Finally, it provides future perspectives and opportunities in electrochemical biosensors including pointof care detection, molecular diagnostics and the integration of this sensor platform with multidisciplinary technologies, towards the ultimate goal of personalized medicine. The book integrates abundant viewpoints from multiple sciences and is helpful and valuable to a wide readership in the various fields of biochemistry, biophysics, bioengineering, and pharmaceutics.
This book covers the remarkable progress in the field of electrospun nanofibrous materials synthesis that has been made in recent years for clean water production. The goal is to offer comprehensive and substantial contents in each chapter, entailing the electrospinning principle, novel materials and methods, properties, characterization, and applications, such as adsorption, catalysis, and membranes. The book is instrumental in terms of showing the scale-up production of desired fibers that ensure the control of the structure¿properties relationship for developing effective water treatment technologies. Every chapter ends with a special section for highlighting research challenges and breakthroughs, so that scientists can explore these opportunities and discover new directions for future developments. Material scientists, nanotechnologists, chemists, engineers, water specialists, and environmentalists will be inspired by the information on electrospun nanofibrous materials tobe found in the book. The wide variety of new ideas and recommended future reading will encourage early-career scientists working in this field to design new experiments and practices. The book is useful for college and university-level students enrolled in project courses in materials science and related fields.
This book features selected papers presented at the 20th International Conference on Near Infrared Spectroscopy. It discusses the latest progress in the field of near infrared spectroscopy from around the globe, including the advances in instrumentation, spectral interpretation and Chemometrics. In addition, it presents potential trends for near infrared spectroscopy in the next decade and highlights developments in process analytical technology, chemical imaging and deep learning. It can be used as a reference book for researchers and application personnel engaged in spectroscopy technology, Chemometrics, analytical instruments, on-site rapid or on-line analysis, process control and other fields. It will also be useful for undergraduates and postgraduates studying these topics.
Guest-edited by Dr Michel Meyer (CNRS, Université de Bourgogne, Dijon) and Prof. Demetrio Milea (Università degli Studi di Messina), Emerging Analytical Techniques for Chemical Speciation Studies focuses on a selection of valuable instrumental methods for investigating complex formation equilibria in solution, providing information on the speciation (stoichiometry and in some instances structure of the formed species) but also allowing the measurement of thermodynamic parameters (equilibrium constants, reaction enthalpy and entropy). The title is split into two volumes belonging to the Series on Chemistry, Energy and the Environment. Part 1 (Volume 15 of this series), discusses various electrochemical, electromigration, and thermophoresis-based methods. Authored by eminent practitioners in their field, each of the four chapters covers both the theoretical and the practical aspects with helpful experimental guidelines. The latest technical and computational advances are described in a way that unambiguously show the major contributions of the authors at the top of their field. Hence, this book is intended to be a valuable introduction to newcomers, while being at the same time a helpful companion to more experienced users of each instrumental techniques. It provides an up-to-date overview with useful tips and hints on the application of selected cutting-edge analytical methods that allow unravelling and modelling intricate complex formation equilibria. So far, there has been no such book focussing specifically on the measurement of thermodynamic parameters, while covering such a wide panel of techniques. This book will be of interest to a broad readership, including analytical, coordination, supramolecular, environmental, instrumental, and physical chemists, radiochemists, electrochemists, and biochemists among others.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.