Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
Soil to Foil tells the extraordinary story of aluminum. Saleem H. Ali reveals its pivotal role in the histories of scientific inquiry and technological innovation as well as its importance to sustainability.
Elastomeric Nanocellulose Composites provides an in-depth study of recent developments in this fast-evolving research field. This book covers diverse aspects of materials engineering, surface treatments, and fabrication of green nanocomposites. It consolidates recent studies and qualitative findings on the incorporation of a myriad of nanocellulose variants into various types of elastomer matrices with the main goal of enhancing its mechanical integrity and potentially phasing out conventional elastomer fillers. The current market is likewise discussed in detail. This book will provide an in-depth study of current developments of nanocellulose incorporated elastomer composites and their applications.The book will be an essential reference resource for material scientists, academic and industrial researchers, and technologists covering all aspects in the field. Carbon black and silica are currently used as fillers in elastomer-based composites, but the use of these reinforcing agents is not sustainable or eco-friendly. Therefore there is a need to look for more sustainable filler materials for elastomers.
Polymeric Adsorbents: Characterization, Properties, Applications, and Modelling offers comprehensive information on the various types of polymeric adsorbents and uses, enabling the reader to understand, identify and prepare adsorbents with the required structure and properties for a range of key industrial applications. The book presents the various types of polymeric adsorbents and their characteristics, focuses on physicochemical properties, synthesis methods, functionalization, and composites and hybrid materials, and highlights key application areas, including gas adsorption, heavy metal removal, hazardous dye removal, and adsorption of antibiotics. Finally, the book provides detailed guidance on modeling of polymeric adsorbent behavior and molecular dynamic (MD) simulation. This is a valuable resource to researchers and advanced students across polymer science, chemistry, materials science, engineering, environmental science, and engineers, scientists, and R&D professionals with an interest in polymeric adsorbents for industrial applications.
Textile reinforcement forms (preforms) play an important role in determining the properties of the final composite and product. The preform formation process provides precise control of the fiber architecture and orientation using a suitable textile manufacturing technique. While the techniques employed for preparing glass and carbon preforms are well-known, there is still a gap in understanding on how to prepare natural preforms for composite reinforcements. Multiscale Textile Preforms and Structures for Natural Fiber Composites will bridge this gap by presenting unified knowledge on the relevant preform preparation techniques and resulting fiber architectures. Emphasis is on the structural parameters of each preform and their effect on the final composite properties. This book assembles information and knowledge on natural fiber reinforcement forms, including conventional forms, such as spun yarn, woven, knitted, nonwoven, braided, and comingled. These are illustrated and classified into one-, two-, and three-dimensional reinforcements. This book also includes information on nonconventional preform formation techniques such as unidirectional tapes, pre-impregnated preforms, spread tows, and tailored fiber placement.
"Energy in Plastics Technology" provides, unlike any other book, the necessary fundamentals for dealing with thermotechnical issues in the processing of plastics, leading to efficient, robust, reliable, economical, and environmentally friendly processes for high-quality products. The following four areas are addressed: - Methodical application of the essential fundamentals to practical problems. The focus is on the formulation of energy balances.- Special emphasis is placed on the understanding of the first and second laws of thermodynamics, with their manifold implications.- Access to key advanced technical literature, which can be highly theoretical, and forms the basis for advanced simulation methods, is provided.- Analytical approaches for modeling processes (as opposed to numerical simulation methods) are covered, so that the influence of the essential process parameters can be better recognized, and correct results in terms of order of magnitude are obtained with reasonable effort. These simplified considerations provide a valuable support for the preparation of experiments and numerical simulations and their critical evaluation. The fundamentals provided are applied - in exemplary calculation examples - to problems relevant to practice in the most important processing and forming methods. The book is aimed at engineers and students working in plastics technology as well as technicians and plastics technologists. Contents:Part 1 - Introductory Fundamentals: Introduction, Material Behavior of Plastics, Thermodynamics, Fluid Mechanics I, Heat TransferPart 2 - Advanced Fundamentals: Steady-State Heat Conduction, Transient Heat Conduction, Thermodynamics of Air-Drying, Fluid Mechanics II, Recycling of PlasticsPart 3 - Practical Examples
Phase separation in polymer blends has achieved a tremendous techno-commercial importance. Most of the applications of polymer blends, such as tissue engineering, membrane technology, electromagnetic shielding, energy harvesting, structural materials, packaging, smart multiphase polymer coatings, depend on the morphologies developed during processing.This book outlines the fundamental aspects of polymer blend thermodynamics, the state-of-the-art processing techniques for specific polymer blend systems currently in use, and the design and fabrication of multiphasic polymeric materials, which will present a multiplicity of opportunities in the water remediation, packaging, and electronic industries, to mention a few. It emphasizes recent research developments, processing techniques, characterization methods, factors influencing phase separation temperature in phase-separated, including partially miscible, polymer blends, and key research challenges in the development of phase-separated polymers materials.With unique and systematic coverage of the journey from fundamentals to applications in polymer blends, this book is ideal for polymer scientists and engineers, material scientists, researchers, engineers, and under- and post-graduate students who are interested in this exciting field of research. It will help industrial researchers and R&D managers bring advanced phase-separated polymer materials/products to the market.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.