Udvidet returret til d. 31. januar 2025

Finishing Operations to Enhance Surface Integrity of Parts - Bog

Bag om Finishing Operations to Enhance Surface Integrity of Parts

Surface integrity management is remarkably important when metal alloys are used to manufacture relevant parts. Advanced materials such as titanium, nickel alloys, non-ferrous alloys, or special steels make surface integrity preservation after machining particularly difficult. Consequently, thorough finishing techniques are required to rectify the surface integrity. Engineering surfaces that exemplify the importance of surface integrity control are typically found in the transportation industry. Pieces formed using complex curved surfaces, such as turbine blades or landing gears, and molds and dies for upsetting operations are good examples. These kinds of parts are often manufactured through 3- or 5-axis machining with the aid of successive adjacent passes of hemispherical tools, whereas this ball-end milling strategy allows one to achieve complex surfaces by following the desired shape through NC interpolations generated by a CAM (it also has deep constraints). In this context, processes such as burnishing, honing, plateau-honing, grinding, and shot-peening can contribute to improving the described surfaces in terms of texture, residual stress, and hardness, and are easily maneuverable from a procedural point of view. This Special Issue collected the research results on these kinds of finishing processes, which are very important to the transportation industry.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783036592848
  • Indbinding:
  • Hardback
  • Sideantal:
  • 182
  • Udgivet:
  • 13. november 2023
  • Størrelse:
  • 175x16x250 mm.
  • Vægt:
  • 657 g.
  • 8-11 hverdage.
  • 7. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Finishing Operations to Enhance Surface Integrity of Parts

Surface integrity management is remarkably important when metal alloys are used to manufacture relevant parts. Advanced materials such as titanium, nickel alloys, non-ferrous alloys, or special steels make surface integrity preservation after machining particularly difficult. Consequently, thorough finishing techniques are required to rectify the surface integrity. Engineering surfaces that exemplify the importance of surface integrity control are typically found in the transportation industry. Pieces formed using complex curved surfaces, such as turbine blades or landing gears, and molds and dies for upsetting operations are good examples. These kinds of parts are often manufactured through 3- or 5-axis machining with the aid of successive adjacent passes of hemispherical tools, whereas this ball-end milling strategy allows one to achieve complex surfaces by following the desired shape through NC interpolations generated by a CAM (it also has deep constraints). In this context, processes such as burnishing, honing, plateau-honing, grinding, and shot-peening can contribute to improving the described surfaces in terms of texture, residual stress, and hardness, and are easily maneuverable from a procedural point of view. This Special Issue collected the research results on these kinds of finishing processes, which are very important to the transportation industry.

Brugerbedømmelser af Finishing Operations to Enhance Surface Integrity of Parts



Find lignende bøger
Bogen Finishing Operations to Enhance Surface Integrity of Parts findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.