Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025
Bag om Integralgleichungen

1.1 Integralgleichungen Eine spezielle Integralgleichung ist aus der Analyse gewöhnlicher Differentialgleichungen wohlbekannt. Das Anfangswertproblem (1.1.1} y'(x)=f(x,y) fürx;:,x , 0 wird durch Integration von x bis x in die Form 0 X (1.1.2} y(x)=yo + 1 f(~.y(~JJd; 0 gebracht, da die Integraldarstellung (2} für den Beweis der Existenz und Eindeutigkeit einer Lösung der Differentialgleichung (1} besser geeignet ist. Allgemein ist eine Integralgleichung eine Gleichung für eine unbekannte Funktion {, wobei f u.a. im Integranden eines Integrals auftritt. Die Integralgleichungen werden weiterhin nach Merkmalen unterschieden, die im folgenden verbal charakterisiert werden. Fredholmsche Integralgleichung: Das Integral erstreckt sich über ein 1 festes Intervall des R oder einen allgemeineren festen Integrationsbereich (Teilmenge des Rd, Kurve, Oberfläche etc.l. Voltarrasche Integralgleichung: Das Integral erstreckt sich über einen mit der Variablen x sich verändernden Bereich (vgl. (2}). Unabhängig von dieser Kennzeichnung ist die folgende Einteilung: Integralgleichung 1. Art: Die unbekannte Funktion kommt nur im Integranden vor. Integralgleichung 2. Art: Die unbekannte Funktion erscheint auch außerhalb des Integranden. Wie bei Differentialgleichungen unterscheidet man lineare Integralgleichungen: Die Gleichung ist linear in der unbe­ kannten Funktion. Im sonstigen Fall spricht man von einer nichtlinearen Integralgleichung. Eine weitere Unterteilung ist von den vorhergehenden Charak­ terisierungen unabhängig und betrifft die Integralbildung: reguläre Integralgleichung: Das Integral existiert als eigentliches Integral. schwach singuiäre Integralgleichung: Das Integral existiert als uneigentliches Integral.

Vis mere
  • Sprog:
  • Tysk
  • ISBN:
  • 9783519123705
  • Indbinding:
  • Paperback
  • Sideantal:
  • 384
  • Udgivet:
  • 1. januar 1997
  • Udgave:
  • 97002
  • Størrelse:
  • 148x21x210 mm.
  • Vægt:
  • 496 g.
  • 8-11 hverdage.
  • 16. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Integralgleichungen

1.1 Integralgleichungen Eine spezielle Integralgleichung ist aus der Analyse gewöhnlicher Differentialgleichungen wohlbekannt. Das Anfangswertproblem (1.1.1} y'(x)=f(x,y) fürx;:,x , 0 wird durch Integration von x bis x in die Form 0 X (1.1.2} y(x)=yo + 1 f(~.y(~JJd; 0 gebracht, da die Integraldarstellung (2} für den Beweis der Existenz und Eindeutigkeit einer Lösung der Differentialgleichung (1} besser geeignet ist. Allgemein ist eine Integralgleichung eine Gleichung für eine unbekannte Funktion {, wobei f u.a. im Integranden eines Integrals auftritt. Die Integralgleichungen werden weiterhin nach Merkmalen unterschieden, die im folgenden verbal charakterisiert werden. Fredholmsche Integralgleichung: Das Integral erstreckt sich über ein 1 festes Intervall des R oder einen allgemeineren festen Integrationsbereich (Teilmenge des Rd, Kurve, Oberfläche etc.l. Voltarrasche Integralgleichung: Das Integral erstreckt sich über einen mit der Variablen x sich verändernden Bereich (vgl. (2}). Unabhängig von dieser Kennzeichnung ist die folgende Einteilung: Integralgleichung 1. Art: Die unbekannte Funktion kommt nur im Integranden vor. Integralgleichung 2. Art: Die unbekannte Funktion erscheint auch außerhalb des Integranden. Wie bei Differentialgleichungen unterscheidet man lineare Integralgleichungen: Die Gleichung ist linear in der unbe­ kannten Funktion. Im sonstigen Fall spricht man von einer nichtlinearen Integralgleichung. Eine weitere Unterteilung ist von den vorhergehenden Charak­ terisierungen unabhängig und betrifft die Integralbildung: reguläre Integralgleichung: Das Integral existiert als eigentliches Integral. schwach singuiäre Integralgleichung: Das Integral existiert als uneigentliches Integral.

Brugerbedømmelser af Integralgleichungen



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.