Gør som tusindvis af andre bogelskere
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.Du kan altid afmelde dig igen.
This book features selected papers presented at the 20th International Conference on Near Infrared Spectroscopy. It discusses the latest progress in the field of near infrared spectroscopy from around the globe, including the advances in instrumentation, spectral interpretation and Chemometrics. In addition, it presents potential trends for near infrared spectroscopy in the next decade and highlights developments in process analytical technology, chemical imaging and deep learning. It can be used as a reference book for researchers and application personnel engaged in spectroscopy technology, Chemometrics, analytical instruments, on-site rapid or on-line analysis, process control and other fields. It will also be useful for undergraduates and postgraduates studying these topics.
This book comprehensively reviews the key topics in the area of nanocomposites and hybrid materials used for waste water treatment and purification. It covers materials chemistry, various synthesis approaches and properties of these nanomaterials for the different water purification techniques. It provides new direction to the readers to better understand the chemistry behind these materials and the methods to improve their properties. This book will be a very valuable reference source for graduates and postgraduates, engineers, research scholars (primarily in the field of material science, water, nanoscience and nanotechnology), material scientists, researchers in the water-related area, scientists working in water treatment plans and pollution mitigation industries.
Many materials can be modeled either as discrete systems or as continua, depending on the scale. At intermediate scales it is necessary to understand the transition from discrete to continuous models and variational methods have proved successful in this task, especially for systems, both stochastic and deterministic, that depend on lattice energies. This is the first systematic and unified presentation of research in the area over the last 20 years. The authors begin with a very general and flexible compactness and representation result, complemented by a thorough exploration of problems for ferromagnetic energies with applications ranging from optimal design to quasicrystals and percolation. This leads to a treatment of frustrated systems, and infinite-dimensional systems with diffuse interfaces. Each topic is presented with examples, proofs and applications. Written by leading experts, it is suitable as a graduate course text as well as being an invaluable reference for researchers.
Advanced manufacturing via computer numerical machining is the art of producing mechanical components employed in aerospace, automobile, and industrial applications where a high level of accuracy is needed. This book focuses on the nano-machining of aluminum alloy and its optimization. The application of aluminum alloy in the manufacturing industry has increased tremendously due to its lightweight to high strength ratio and high-level resistance to corrosion. However, aluminum alloy has some challenges during the machining and manufacturing stage in order to solve real-life manufacturing challenges in advanced machining operation for sustainable production processes. Therefore, it is a need for the implementation of a general algebraic modeling system (GAMS) and other metaheuristic techniques for problem solving and to effectively develop mathematical models for high accuracy prediction and optimization under nano-lubrication machining conditions. This book discusses majorly on themajor three responses in machining such as surface roughness, cutting force, and material removal rate, which will give an excellent guide to undergraduate and postgraduate students, senior research fellows in academia, operational, and strategic staff in manufacturing industries.
This textbook discusses the development and analysis of polygeneration systems to generate electricity, fresh water, hot air, cold air, and hot water from a source of energy. Topics covered in this book are desalination with no pressure or vacuum components; combined use of refrigerator and heat pump with a vapor compression refrigeration (VCR) cycle; binary fluid polygeneration; compact units; and flexible operation. It covers four polygeneration configurations, viz. binary fluid polygeneration with single-stage HDH, binary fluid polygeneration with double-stage HDH, heat pump polygeneration with single-stage HDH, and heat pump polygeneration with double-stage polygeneration. End-of-chapter problems and solved examples aid in self learning of the students. The textbook is useful for graduate and advanced graduate students studying courses such as polygeneration, sustainable energy, power generation, and alike. This book is also a useful supplementary text for researchers influid dynamics, thermal engineering, and allied fields.
This brief introduces the reader to the topic of superhalogens, a special class of atomic clusters that can potentially mimic the behavior of halogen atoms. It provides an introduction to the history of superhalogens, their conceptualization, and experimental confirmation and discusses in detail their properties and various applications. Some of the applications analyzed in the text include their potential use in the design of superacids, electrolytes for Li-ion batteries, and organic superconductors as well as their use in ionic liquids. The latest developments in the field are also presented. This brief is of great interest to graduates and researchers working at the interface of chemistry, physics, and materials science.
This book introduces characterizations of hyperordered structures using latest quantum beam technologies, the advanced theoretical methods for understanding the roles of the structures, and the state-of-the-arts materials containing the structures. In this book, the authors focus on the importance of defect complexes to improve functionality of crystals and that of orders of network structures to improve functionality of glass materials. These features can be regarded as interphases between perfect crystals and perfect amorphous, and they are the key factor for the evolution of materials science to a new dimension. The authors call such interphases "hyperordered structures" in this book. This is the first book that comprehensively summarizes glass science, defect science, and quantum beam science. It is valuable not only for active researchers in industry and academia but also graduate students.
This concise book covers fundamental principles of colloidal self-assembly and overviews of basic and applied research in this field, with abundant illustrations and photographs. Experimental and computer simulation methods to study the colloidal self-assembly are demonstrated. Complementary videos "Visual Guide to Study Colloidal Self-Assembly" on the research procedures and assembly processes are available via SpringerLink to support learning.The book explains basic elements of mechanics and electromagnetism required to study the colloidal self-assembly, so that graduate students of chemistry and engineering courses can learn the contents on their own. It reviews important research topics, including the authors' works on the colloidal self-assembly of more than 30 years¿ work. The principal topics include: (1) crystallization of colloidal dispersions, with the emphasis on the role of surface charges, (2) fabrication of large and high-quality colloidal crystals by applyingcontrolled growth methods, (3) association and crystallization by depletion attraction in the presence of polymers, (4) clustering of colloidal particles, especially those in oppositely charged systems, and (5) two-dimensional colloidal crystals. Furthermore, it covers (6) applications of colloidal crystals, ranging from cosmetics to sensing materials. We also describe space experiments on colloidal self-assembly in the International Space Station.This book will interest graduate school students in colloid and polymer science, pharmaceutics, soft matter physics, material sciences, and chemical engineering courses. It will also be a useful guide for individuals in academia and industry undertaking research in this field.
This book introduces super gravity metallurgy in separation of valuable component in metallurgical slag. It collects the principle, apparatus and research for super gravity high-temperature metallurgy and the novel technology for selective crystallization and separation of various valuable components in different metallurgical slags by super gravity. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university teachers, researchers, R&D engineers and graduate students in pyrometallurgy and extractive metallurgy who wish to explore innovative methods and technologies that lead to more efficient and environmentally sustainable utilization of metallurgical slag.
This book highlights contemporary state of research in multidisciplinary areas in computer science, computer engineering, chemical engineering, mechanical engineering, physics, biomedical sciences, life sciences, medicine, and health care. The accepted submissions to the 7th IRC Conference on Science, Engineering and Technology (IRC-SET 2021) that were presented on August 7, 2021, are published in this conference proceedings. The papers presented here were shortlisted after extensive rounds of rigorous reviews by a panel of esteemed individuals who are pioneers and experts in their respective domains.
This book is an introductory text for graduate students, researchers in industries, and those who are just beginning to work on organic electronics materials, devices and their applications. The book includes mainly fundamental principles and theories for understanding organic electronics materials and devices, but also provides information about state-of-the-art technologies, applications and future prospects. These topics encompass physics for organic transistors, structure control technologies of polymer semiconductors, nanomaterials electronics, organic solar cells, organic electroluminescence and dynamics for excitation, among others. In this second edition, the topics that have had particular progress in the field of organic electronics over the past seven years were added. For example, Thermally Activated Delayed Fluorescence (TADF) technology for organic LED, the development of perovskite materials, light-emitting materials using nanomaterials and the development of skin sensors and wearable/embedded devices. The recent scientific understanding of organic electronics is also introduced. This book will help readers to be able to contribute to society with the technologies and science of organic electronics materials in the future.
This book is an extensive and detailed guide to the subject of materials ageing in light-water nuclear reactors. Proper management of materials degradation is essential for the safe, reliable, and economic operation of nuclear power plants across the globe. This handbook features a stunning and thorough observational treatment of the key materials degradational phenomena in light-water reactors, capturing the results of some typical destructive examinations that have been carried out to understand and furthermore mitigate these failures. It provides a comprehensive collection of unique photographs, detailed schematics, concise analyses, as well as precise measurements and expert recommendations. It is organized in such a manner that engineers and scientists can use the observations presented to not only arrive at their own conclusions but also subsequently improve their knowledge of specific materials ageing issues.This handbook is supported by the Materials Ageing Institute (MAI) and Electricite de France (EDF) and is an extensive update to the previous edition, featuring up-to-minute information to reflect the state of the art as of 2020. Since its founding in 2008, the MAI has succeeded in expanding its membership and today represents two-thirds of the world's installed nuclear power capacity, benefiting from nearly 5,000 years of combined experience in reactor operation. The vast archive of past observational data and world-leading expert recommendations presented in this handbook leverage the unique expertise of the MAI in studying the key degradation phenomena of materials to ensure the secure and sustainable operation of carbon-free electricity production. It is a must-have on the desks of any engineers or researchers involved in ageing management for light-water reactors.
. The main aim of this book is to shine a spotlight on key experiments and their crucial importance for advancing our understanding of physics. Physics is an empirical science, and experiments have always been a driving force in the development of our understanding of nature. Facts matter. In that sense, the book attempts to be complementary to the many popularizations of theoretical physics, and to counterbalance the frequent emphasis there on more speculative ideas.Experimental physics is also an essential pillar in physics teaching, as well as helping broader audiences to better understand important concepts, particularly in challenging fields such as relativity or quantum physics, where our common sense intuition often fails.Readers are taken on an historical journey, starting with ¿Free Fall¿ and culminating in ¿Spooky Action at a Distance¿. En route they will encounter many important branches ofphysics, whose main ideas and theoretical description will be given a more empirical meaning. At the end, the reader is invited to reflect on what could be exciting and important directions for fundamental physics. All readers with an undergraduate degree in physical sciences or engineering will enjoy and learn much from this stimulating and original text.
This book discusses some of the reduction agents and processes involved in organic synthesis such as catalytic hydrogenation, homogeneous catalytic hydrogenation, asymmetric catalytic hydrogenations, hydride transfer reagents, dissolving metal reductions, and non-metallic reducing agents. It further covers the topics of photochemical reductions, enzymatic or microbial reduction, reductions of specific type of organic compounds including hydrocarbons, hydrogenolysis, enzymatic or microbial reduction, and some reductions under benign condition. This book is of immense use to undergraduate and postgraduate students of organic chemistry. It is also a useful reference book for researchers involved in organic synthesis.
This book explores the potential of magnetic superconductors in storage systems, specifically focusing on superconducting magnetic energy storage (SMES) systems and using the Spanish electricity system, controlled by Red Eléctrica de España (REE), as an example.The book provides a comprehensive analysis of the economic costs associated with the manufacture and maintenance of SMES systems, as well as a regulatory analysis for their implementation in the complex Spanish electrical system. The analysis also compares this system with the regulations of other countries, providing a comprehensive case study.The book examines the possible economic and environmental benefits of using magnetic superconductors in electrical systems and provides a technical study of the use of these systems in hybrid storage systems that complement each other to optimize network performance. The study is conducted from the perspective of new distribution networks, distributed generation, and the concepts of the smart city. The book also explores potential applications and developments, such as electric vehicles.Overall, this book offers an insightful and comprehensive analysis of the potential of magnetic superconductors in storage systems. It will be an invaluable resource for researchers, engineers, and policymakers interested in the future of energy storage systems
This book is devoted to non-destructive materials characterization (NDMC) using different non-destructive evaluation techniques. It presents theoretical basis, physical understanding, and technological developments in the field of NDMC with suitable examples for engineering and materials science applications. It is written for engineers and researchers in R&D, design, production, quality assurance, and non-destructive testing and evaluation. The relevance of NDMC is to achieve higher reliability, safety, and productivity for monitoring production processes and also for in-service inspections for detection of degradations, which are often precursors of macro-defects and failure of components. Ultrasonic, magnetic, electromagnetic and X-rays based NDMC techniques are discussed in detail with brief discussions on electron and positron based techniques.
Our current concept of matter, one of scientific research¿s greatest successes, represents a long journey, from questions posed during the birth of philosophy in Ancient Greece to recent advances in physics and chemistry, including Quantum Physics. This book outlines that journey. The book has three parts, each detailing a phase of the journey. The first saw the development of a conception based on "classical" physics; the second saw the construction of the "old" quantum theory attempting to explain the mysterious properties of matter, resulting in formulation of the "new" quantum theory; the third saw the formation of the modern conception of matter, based on quantum mechanics. Along the way, various topics are discussed, including: rediscovery and appropriation of antiquity by Western culture in the modern era; the subsequent revision process in the 16th and 17th centuries and the new experiments and theories of the 18th; attempts to understand the mysterious properties of matterthat could not be explained by classical physics; the first quantization hypotheses; discovery of new purely "quantum-mechanical" properties of matter; and the ultimate clarification of atomic structure. This book is aimed at anyone who wants a clear picture of how we arrived at the modern conception of matter.
This monograph contains an in-depth and coherent treatment of dimension-reduced modeling of blood flows on the level of large vessels (macrocirculation). The authors reduce the complexity by combining a one-dimensional Navier-Stokes equation and a simplified FSI-concept. The influence of omitted vessels, which are subsequent to the outlets of larger vessels, is accounted for by systems of ordinary differential equations (0D models). The target audience primarily comprises research experts in the field of biomedical engineering, but the book may also be beneficial for graduate students alike.
This book presents the development of electrospun materials, fundamental principles of electrospinning process, controlling parameters, electrospinning strategies, and electrospun nanofibrous structures with specific properties for applications in tissue engineering and regenerative medicine, textile, water treatment, sensor, and energy fields. This book can broadly be divided into three parts: the first comprises basic principles of electrospinning process, general requirements of electrospun materials and advancement in electrospinning technology, the second part describes the applications of electrospun materials in different fields and future prospects, while the third part describes applications that can be used in advanced manufacturing based on conjoining electrospinning and 3D printing. Electrospinning is the most successful process for producing functional nanofibers and nanofibrous membranes with superior chemical and physical properties. The unique properties of electrospun materials including high surface to volume ratio, flexibility, high mechanical strength, high porosity, and adjustable nanofiber and pore size distribution make them potential candidates in a wide range of applications in biomedical and engineering areas. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types with tunable diameter and morphology, tunable characteristics, having specific patterns and 3D structures.With a strong focus on fundamental materials science and engineering, this book provides systematic and comprehensive coverage of the recent developments and novel perspectives of electrospun materials. This comprehensive book includes chapters that discuss the latest and emerging applications of nanofiber technology in various fields, specifically in areas such as wearable textile, biomedical applications, energy generation and storage, water treatment and environmental remediation, and sensors such as biomarkers in healthcare and biomedical engineering. Despite all these advancements, there are still challenges to be addressed and overcome for nanofiber technology to move towards maturation.
This book is published on dedication of Prof. Dr. Igor Sevostianov who passed away in 2021. He was a great Russian-American scientist who made significant contributions in the field of mechanics of heterogeneous media. This book contains research papers from his friends and colleagues in this research field.
The textbook is intended for the undergraduate and postgraduate students of chemistry, biology and medicine. It covers diverse topics of biophysical chemistry ranging from the structure of cells, lipids, and proteins to nonequilibrium thermodynamics, enzyme catalysis, and fast reaction kinetics. The book discusses the fundamental structural concepts in the first part and provides a systematic account of different experimental techniques such as chromatography, electrophoresis, and gel filtration that are extensively employed in biochemical research in the second part. It also includes typical applications using NMR, ESR, and SPR to comprehend the power of spectroscopic tools in biophysical chemistry. This textbook also deals with advanced topics of entropy production and biosensors. It consists of a large number of schematic diagrams as well as tabular compilations of kinetic, electrochemical, and thermochemical data. It includes multiple-choice questions, numerical examples, and descriptive questions in various chapters to aid self-learning among students. In view of the diverse coverage of topics, this textbook is a valuable asset to undergraduate and postgraduate students. It is also a useful reference for researchers and professionals in chemistry, biology, and medicine.
This book presents the select proceedings of the 3rd National Aerospace Propulsion Conference (NAPC 2020). It discusses the recent trends in the area of aerospace propulsion technologies covering both air-breathing and non-air-breathing propulsion. The topics covered include state-of-the-art design, analysis and developmental testing of gas turbine engine modules and sub-systems like compressor, combustor, turbine and alternator; advances in spray injection and atomization; aspects of combustion pertinent to all types of propulsion systems and nuances of space, missile and alternative propulsion systems. The book will be a valuable reference for beginners, researchers and professionals interested in aerospace propulsion and allied fields.
This book offers an interdisciplinary theoretical approach based on non-equilibrium statistical thermodynamics and control theory for mathematically modeling shock-induced out-of-equilibrium processes in condensed matter. The book comprises two parts. The first half of the book establishes the theoretical approach, reviewing fundamentals of non-equilibrium statistical thermodynamics and control theory of adaptive systems. The latter half applies the presented approach to a problem on shock-induced plane wave propagation in condensed matter. The result successfully reproduces the observed feature of waveform propagation in experiments, which conventional continuous mechanics cannot access. Further, the consequent stress-strain relationships derived with relaxation and inertia effect in elastic-plastic transition determines material properties in transient regimes.
This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 1 focuses on fundamentals in the field and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on some selected lectures from the Eleventh International Exergy, Energy and Environmental Symposium (IEEES-11) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "e;energetic efficiency."e; Included are fundamental and historical coverage of the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book.
This book describes the design experience of automatic machines and the theoretical background for controlling them. Unlike the existing literature, it includes design concepts and their relationship with the dynamic behavior of automated devices, and links the dynamic response of the machine elements with the actuators that constitute an automatic machine. As such, it demonstrates that it is vital to properly model any automatic machine as a single system and find the final response to have a good design and control scheme. The introduction describes the background for designing automatic machines, their uniqueness in machine design, and the need to understand dynamic behavior. The following chapters provide the background for modeling multibody systems, examples of typical automatic machines, and the basis for determining the dynamic response of the most common actuators (motor, pneumatic, and hydraulic pistons and valves). The fourth chapter describes the dynamic response of the most common sensors utilized in automatic machines, while the fifth chapter includes the dynamic models of the machine elements that connect the actuators with the end effects (specific tools for each particular application). The final chapters contain examples of dynamic models for different automatic machines, including all the elements that affect the final response, and describe the simulation techniques (and their application to the examples) and the application of the transfer function for estimating the transient response of automatic machines.
Green Fire Retardants for Polymeric Materials looks at the choice of materials and treatments for improving fire retardancy as well as green approaches to synthesising these fire retardants.
Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.
Ved tilmelding accepterer du vores persondatapolitik.