Udvidet returret til d. 31. januar 2025

La philosophie des mathématiques de Kant - Louis Couturat - Bog

La philosophie des mathématiques de Kantaf Louis Couturat
Bag om La philosophie des mathématiques de Kant

Kant caractérise la méthode mathématique en l'opposant à la méthode de la philosophie. La mathématique seule a des axiomes, c'est-à-dire des principes synthétiques a priori, parce qu'elle seule peut, en construisant un concept, lier a priori et immédiatement ses prédicats dans l'intuition de son objet . La philosophie ne peut pas avoir d'axiomes, car elle ne peut pas sortir du concept pour le lier à un autre concept. La mathématique seule a des définitions, car seule elle crée ses concepts par une synthèse arbitraire; par suite, ses définitions sont indiscutables et ne peuvent être erronées... La mathématique seule a des démonstrations proprement dites, car on ne peut appeler démonstration qu'une preuve apodictique, en tant qu'elle est intuitive . La philosophie ne peut pas effectuer des démonstrations sur ses concepts, car il lui manque la certitude intuitive . La conclusion de cet examen est la séparation complète, l'opposition absolue de la mathématique, non seulement par rapport à la métaphysique, mais par rapport à la philosophie tout entière, et notamment à la logique. Car la logique repose sur des principes analytiques, qui paraissent se réduire au principe de contradiction; et elle ne permet d'établir que des jugements analytiques... Ce livre examine successivement les différentes thèses que nous venons d'énumérer.

Vis mere
  • Sprog:
  • Fransk
  • ISBN:
  • 9782366595222
  • Indbinding:
  • Paperback
  • Sideantal:
  • 134
  • Udgivet:
  • 18. oktober 2017
  • Størrelse:
  • 133x8x203 mm.
  • Vægt:
  • 159 g.
  • 8-11 hverdage.
  • 13. december 2024
PÃ¥ lager
Forlænget returret til d. 31. januar 2025

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af La philosophie des mathématiques de Kant

Kant caractérise la méthode mathématique en l'opposant à la méthode de la philosophie. La mathématique seule a des axiomes, c'est-à-dire des principes synthétiques a priori, parce qu'elle seule peut, en construisant un concept, lier a priori et immédiatement ses prédicats dans l'intuition de son objet . La philosophie ne peut pas avoir d'axiomes, car elle ne peut pas sortir du concept pour le lier à un autre concept. La mathématique seule a des définitions, car seule elle crée ses concepts par une synthèse arbitraire; par suite, ses définitions sont indiscutables et ne peuvent être erronées... La mathématique seule a des démonstrations proprement dites, car on ne peut appeler démonstration qu'une preuve apodictique, en tant qu'elle est intuitive . La philosophie ne peut pas effectuer des démonstrations sur ses concepts, car il lui manque la certitude intuitive . La conclusion de cet examen est la séparation complète, l'opposition absolue de la mathématique, non seulement par rapport à la métaphysique, mais par rapport à la philosophie tout entière, et notamment à la logique. Car la logique repose sur des principes analytiques, qui paraissent se réduire au principe de contradiction; et elle ne permet d'établir que des jugements analytiques... Ce livre examine successivement les différentes thèses que nous venons d'énumérer.

Brugerbedømmelser af La philosophie des mathématiques de Kant



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.