Udvidet returret til d. 31. januar 2025

Numerical Analysis: A Graduate Course - David E. Stewart - Bog

Bag om Numerical Analysis: A Graduate Course

This book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031081231
  • Indbinding:
  • Paperback
  • Sideantal:
  • 648
  • Udgivet:
  • 2. december 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 155x33x235 mm.
  • Vægt:
  • 1084 g.
  • Ukendt - mangler pt..

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Numerical Analysis: A Graduate Course

This book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science.

Brugerbedømmelser af Numerical Analysis: A Graduate Course



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.