Udvidet returret til d. 31. januar 2025

Parameter Estimation in Stochastic Volatility Models - Jaya P. N. Bishwal - Bog

Bag om Parameter Estimation in Stochastic Volatility Models

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031038631
  • Indbinding:
  • Paperback
  • Sideantal:
  • 644
  • Udgivet:
  • 7. august 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 155x35x235 mm.
  • Vægt:
  • 961 g.
  • 8-11 hverdage.
  • 9. december 2024
På lager

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Parameter Estimation in Stochastic Volatility Models

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Brugerbedømmelser af Parameter Estimation in Stochastic Volatility Models



Find lignende bøger
Bogen Parameter Estimation in Stochastic Volatility Models findes i følgende kategorier:

Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.