Udvidet returret til d. 31. januar 2025

Machine Learning and Knowledge Discovery in Databases, Part II - Thomas Hofmann - Bog

Bag om Machine Learning and Knowledge Discovery in Databases, Part II

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011.The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783642237829
  • Indbinding:
  • Paperback
  • Sideantal:
  • 704
  • Udgivet:
  • 6. september 2011
  • Størrelse:
  • 155x38x235 mm.
  • Vægt:
  • 1048 g.
  • 8-11 hverdage.
  • 30. november 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Machine Learning and Knowledge Discovery in Databases, Part II

This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011.The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.

Brugerbedømmelser af Machine Learning and Knowledge Discovery in Databases, Part II



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.