Udsalget slutter om
Udvidet returret til d. 31. januar 2025

Lie Theory - Jean-Philippe Anker - Bog

Bag om Lie Theory

Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory. Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles. Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borel-Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borel-Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques. Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harish-Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization are introduced. Concrete examples and relevant exercises engage the reader. Knowledge of basic representation theory of Lie groups as well as familiarity withsemisimple Lie groups and symmetric spaces is required of the reader.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780817635268
  • Indbinding:
  • Hardback
  • Sideantal:
  • 207
  • Udgivet:
  • 15. december 2004
  • Udgave:
  • 2005
  • Størrelse:
  • 161x15x240 mm.
  • Vægt:
  • 476 g.
  • 8-11 hverdage.
  • 12. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

  • BLACK FRIDAY
    : :

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Lie Theory

Semisimple Lie groups, and their algebraic analogues over fields other than the reals, are of fundamental importance in geometry, analysis, and mathematical physics. Three independent, self-contained volumes, under the general title Lie Theory, feature survey work and original results by well-established researchers in key areas of semisimple Lie theory.
Unitary Representations and Compactifications of Symmetric Spaces, a self-contained work by A. Borel, L. Ji, and T. Kobayashi, focuses on two fundamental questions in the theory of semisimple Lie groups: the geometry of Riemannian symmetric spaces and their compactifications; and branching laws for unitary representations, i.e., restricting unitary representations to (typically, but not exclusively, symmetric) subgroups and decomposing the ensuing representations into irreducibles.
Ji's introductory chapter motivates the subject of symmetric spaces and their compactifications with carefully selected examples. A discussion of Satake and Furstenberg boundaries and a survey of the geometry of Riemannian symmetric spaces in general provide a good background for the second chapter, namely, the Borel-Ji authoritative treatment of various types of compactifications useful for studying symmetric and locally symmetric spaces. Borel-Ji further examine constructions of Oshima, De Concini, Procesi, and Melrose, which demonstrate the wide applicability of compactification techniques.
Kobayashi examines the important subject of branching laws. Important concepts from modern representation theory, such as Harish-Chandra modules, associated varieties, microlocal analysis, derived functor modules, and geometric quantization are introduced. Concrete examples and relevant exercises engage the reader.
Knowledge of basic representation theory of Lie groups as well as familiarity withsemisimple Lie groups and symmetric spaces is required of the reader.

Brugerbedømmelser af Lie Theory



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.