Udsalget slutter om
Udvidet returret til d. 31. januar 2025

Machine Learning for Knowledge Discovery with R - Kao-Tai Tsai - Bog

Bag om Machine Learning for Knowledge Discovery with R

Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein. Key Features: Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies. Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations. Written by statistical data analysis practitioner for practitioners. The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781032071596
  • Indbinding:
  • Paperback
  • Sideantal:
  • 244
  • Udgivet:
  • 25. september 2023
  • Størrelse:
  • 156x14x234 mm.
  • Vægt:
  • 372 g.
  • 2-3 uger.
  • 16. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

  • BLACK FRIDAY
    : :

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Machine Learning for Knowledge Discovery with R

Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.
Key Features:
Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.
Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.
Written by statistical data analysis practitioner for practitioners.
The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Brugerbedømmelser af Machine Learning for Knowledge Discovery with R



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.