Udvidet returret til d. 31. januar 2024

Mechanism-Based Assessment of Structural and Functional Behavior of Sustainable Cottonid - Ronja Victoria Scholz - Bog

Bag om Mechanism-Based Assessment of Structural and Functional Behavior of Sustainable Cottonid

Ronja Victoria Scholz assesses the performance of cellulose-based Cottonid for implementation as sustainable construction material. Quasi-static and fatigue tests are performed in varying hygrothermal test conditions using mechanical testing systems in combination with integrable climate chambers. To investigate humidity-driven actuation properties, customized specimen holders are designed. Accompanying microstructural in situ experiments in analytical devices enable a profound understanding of effective material-specific damage and failure mechanisms. The findings are transferred into strength-deformation diagrams as well as Woehler curves, which enable a comparative evaluation of several process-related and environmental influencing factors and can directly be used for dimensioning of Cottonid elements for structural applications. The interpretation of thermoelastic material reponse during loading is used as scientific value for lifetime prediction. Comprehensive investigations on industrial standard materials as well as structurally optimized Cottonid variants provide a scientific basis for categorizing material¿s structural and functional performance towards common technical plastics and wood.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783658375393
  • Indbinding:
  • Paperback
  • Sideantal:
  • 252
  • Udgivet:
  • 17. maj 2022
  • Udgave:
  • 22001
  • Størrelse:
  • 148x14x210 mm.
  • Vægt:
  • 331 g.
  • 8-11 hverdage.
  • 15. november 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Mechanism-Based Assessment of Structural and Functional Behavior of Sustainable Cottonid

Ronja Victoria Scholz assesses the performance of cellulose-based Cottonid for implementation as sustainable construction material. Quasi-static and fatigue tests are performed in varying hygrothermal test conditions using mechanical testing systems in combination with integrable climate chambers. To investigate humidity-driven actuation properties, customized specimen holders are designed. Accompanying microstructural in situ experiments in analytical devices enable a profound understanding of effective material-specific damage and failure mechanisms. The findings are transferred into strength-deformation diagrams as well as Woehler curves, which enable a comparative evaluation of several process-related and environmental influencing factors and can directly be used for dimensioning of Cottonid elements for structural applications. The interpretation of thermoelastic material reponse during loading is used as scientific value for lifetime prediction. Comprehensive investigations on industrial standard materials as well as structurally optimized Cottonid variants provide a scientific basis for categorizing material¿s structural and functional performance towards common technical plastics and wood.

Brugerbedømmelser af Mechanism-Based Assessment of Structural and Functional Behavior of Sustainable Cottonid



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.