Udvidet returret til d. 31. januar 2025

The Mathematics of Machine Learning - Maria Han Veiga - Bog

Bag om The Mathematics of Machine Learning

This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783111288475
  • Indbinding:
  • Paperback
  • Sideantal:
  • 260
  • Udgivet:
  • 1. juli 2024
  • Størrelse:
  • 170x0x240 mm.
  • 8-11 hverdage.
  • 7. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af The Mathematics of Machine Learning

This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.

There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.

This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.

Brugerbedømmelser af The Mathematics of Machine Learning



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.