Udvidet returret til d. 31. januar 2025

Evaluation of Protein-Flavour Binding on Flavour Delivery - Kun Wang - Bog

Evaluation of Protein-Flavour Binding on Flavour Deliveryaf Kun Wang
Bag om Evaluation of Protein-Flavour Binding on Flavour Delivery

This work was undertaken to evaluate interactions between plant proteins and selected volatile flavour compounds on flavour delivery and heat-induced gelation properties for canola, pea and wheat proteins. An automated dynamic headspace GC/MS approach was adopted to monitor the change in flavour intensity in aqueous model systems. The extent of flavour binding was a function of protein source, protein isolation method and stereochemistry of the flavour compound. Using Differential Scanning Calorimetry and intrinsic fluorimetry, potential conformational changes due to partial denaturation of proteins were observed. Aldehyde flavours exhibited much higher ¿unfolding capacity¿ than ketones, which accounted for their remarkable binding affinities. Two volatile flavour by-products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between salt-extracted canola protein isolates (CPIs) with hexanal and heptanal, respectively, due to aldolisation reactions. Competitive bindings among homologous ketones and between heterologous aldehyde and ketone mixture were observed, while a synergistic effect was noted for aldehyde flavour mixtures.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783659626111
  • Indbinding:
  • Paperback
  • Sideantal:
  • 284
  • Udgivet:
  • 10. april 2019
  • Størrelse:
  • 150x18x220 mm.
  • Vægt:
  • 441 g.
  • 2-3 uger.
  • 9. december 2024
På lager

Normalpris

  • BLACK NOVEMBER

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Evaluation of Protein-Flavour Binding on Flavour Delivery

This work was undertaken to evaluate interactions between plant proteins and selected volatile flavour compounds on flavour delivery and heat-induced gelation properties for canola, pea and wheat proteins. An automated dynamic headspace GC/MS approach was adopted to monitor the change in flavour intensity in aqueous model systems. The extent of flavour binding was a function of protein source, protein isolation method and stereochemistry of the flavour compound. Using Differential Scanning Calorimetry and intrinsic fluorimetry, potential conformational changes due to partial denaturation of proteins were observed. Aldehyde flavours exhibited much higher ¿unfolding capacity¿ than ketones, which accounted for their remarkable binding affinities. Two volatile flavour by-products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between salt-extracted canola protein isolates (CPIs) with hexanal and heptanal, respectively, due to aldolisation reactions. Competitive bindings among homologous ketones and between heterologous aldehyde and ketone mixture were observed, while a synergistic effect was noted for aldehyde flavour mixtures.

Brugerbedømmelser af Evaluation of Protein-Flavour Binding on Flavour Delivery



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.