Udvidet returret til d. 31. januar 2025

Observation and Control of Magnetic Order Dynamics by Terahertz Magnetic Nearfield - Takayuki Kurihara - Bog

Bag om Observation and Control of Magnetic Order Dynamics by Terahertz Magnetic Nearfield

This book explicates the optical controls of antiferromagnetic spins by intense terahertz (THz) electromagnetic waves. The book comprises two key components: (1) the experimental demonstration of the enhancement of a THz magnetic field using a split-ring resonator (SRR) and (2) the control of the direction of magnetization by using the enhanced THz magnetic field to break the symmetry of optically-induced phase transition. These make up the first step leading to future spintronics devices. In the beginning of the book, the author reviews the basics of the ultrafast laser and nonlinear optical techniques as well as the previously achieved experiments to control spin dynamics by THz magnetic fields. In this context, a new experimental protocol is described, in which electron spins in a ferromagnetic material are redirected at the unprecedented level in cooperation with the enhanced THz magnetic field. Subsequently, the author demonstrates that the THz magnetic field is significantly amplified as a nearfield around the SRR structured metamaterial, which is implemented by measuring spin precession in a solid. At the end, the author presents the key experiment in which the amplified THz magnetic nearfield is applied to the weak ferromagnet ErFeO3 along with the femtosecond near-infrared pulse, demonstrating the successful control of symmetry breaking of the spin system due to coherent control of the optically-induced spin reorientation phase transition pathways. The comprehensive introductory review in this book allows readers to overview state-of-the-art terahertz spectroscopic techniques. In addition, the skillful description of the experiments is highly informative for readers in ultrafast magnonics, ultrafast optics, terahertz technology and plasmonic science.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789811687952
  • Indbinding:
  • Paperback
  • Sideantal:
  • 128
  • Udgivet:
  • 10. januar 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 155x8x235 mm.
  • Vægt:
  • 207 g.
  • 8-11 hverdage.
  • 9. december 2024
På lager

Normalpris

  • BLACK WEEK

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Observation and Control of Magnetic Order Dynamics by Terahertz Magnetic Nearfield

This book explicates the optical controls of antiferromagnetic spins by intense terahertz (THz) electromagnetic waves. The book comprises two key components: (1) the experimental demonstration of the enhancement of a THz magnetic field using a split-ring resonator (SRR) and (2) the control of the direction of magnetization by using the enhanced THz magnetic field to break the symmetry of optically-induced phase transition. These make up the first step leading to future spintronics devices.
In the beginning of the book, the author reviews the basics of the ultrafast laser and nonlinear optical techniques as well as the previously achieved experiments to control spin dynamics by THz magnetic fields. In this context, a new experimental protocol is described, in which electron spins in a ferromagnetic material are redirected at the unprecedented level in cooperation with the enhanced THz magnetic field. Subsequently, the author demonstrates that the THz magnetic field is significantly amplified as a nearfield around the SRR structured metamaterial, which is implemented by measuring spin precession in a solid. At the end, the author presents the key experiment in which the amplified THz magnetic nearfield is applied to the weak ferromagnet ErFeO3 along with the femtosecond near-infrared pulse, demonstrating the successful control of symmetry breaking of the spin system due to coherent control of the optically-induced spin reorientation phase transition pathways.
The comprehensive introductory review in this book allows readers to overview state-of-the-art terahertz spectroscopic techniques. In addition, the skillful description of the experiments is highly informative for readers in ultrafast magnonics, ultrafast optics, terahertz technology and plasmonic science.

Brugerbedømmelser af Observation and Control of Magnetic Order Dynamics by Terahertz Magnetic Nearfield



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.