Vi bøger
Levering: 1 - 2 hverdage
Forlænget returret til d. 31. januar 2025

Coxeter Matroids - Neil White - Bog

Bag om Coxeter Matroids

Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group. Key topics and features: * Systematic, clearly written exposition with ample references to current research * Matroids are examined in terms of symmetric and finite reflection groups * Finite reflection groups and Coxeter groups are developed from scratch * The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties * Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter * Many exercises throughout * Excellent bibliography and index Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781461274001
  • Indbinding:
  • Paperback
  • Sideantal:
  • 292
  • Udgivet:
  • 16. september 2011
  • Størrelse:
  • 155x16x235 mm.
  • Vægt:
  • 446 g.
  • 8-11 hverdage.
  • 16. januar 2025
På lager
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Medlemspris

Prøv i 30 dage for 45 kr.
Herefter fra 79 kr./md. Ingen binding.

Beskrivelse af Coxeter Matroids

Matroids appear in diverse areas of mathematics, from combinatorics to algebraic topology and geometry. This largely self-contained text provides an intuitive and interdisciplinary treatment of Coxeter matroids, a new and beautiful generalization of matroids which is based on a finite Coxeter group.
Key topics and features:
* Systematic, clearly written exposition with ample references to current research
* Matroids are examined in terms of symmetric and finite reflection groups
* Finite reflection groups and Coxeter groups are developed from scratch
* The Gelfand-Serganova theorem is presented, allowing for a geometric interpretation of matroids and Coxeter matroids as convex polytopes with certain symmetry properties
* Matroid representations in buildings and combinatorial flag varieties are studied in the final chapter
* Many exercises throughout
* Excellent bibliography and index
Accessible to graduate students and research mathematicians alike, "Coxeter Matroids" can be used as an introductory survey, a graduate course text, or a reference volume.

Brugerbedømmelser af Coxeter Matroids



Gør som tusindvis af andre bogelskere

Tilmeld dig nyhedsbrevet og få gode tilbud og inspiration til din næste læsning.